طراحی تقسیم‌کننده‌ توان بر مبنای فناوری موج‌بر شکافی به منظور استفاده در آنتن آرایه‌ شکافی باند 60 گیگاهرتز با سطح گلبرگ کناری پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مخابرات، دانشگاه کاشان

2 استادیار/دانشگاه کاشان

چکیده

در این مقاله یک نمونه تقسیم­کننده توان موج میلی­متری برمبنای فناوری موج‌بر شکافی برای استفاده در شبکه تغذیه یک آنتن­ آرایه شکافی طراحی می­شود. نتایج شبیه­سازی نشان می­دهد که ساختار پیشنهادی دارای پهنای باند تطبیق ورودی حدود 10% در محدوده فرکانسی 58 تا GHz 64 است. مزیت بارز استفاده از فناوری موج‌بر شکافی در فرکانس­های موج میلی­متری دست­یابی به ساختارهای موج‌بری با تلفات کم و بدون نیاز به اتصال فیزیکی لایه­های مختلف ساختار به یکدیگر است که پیچیدگی و چالش­های فرایند ساخت را کاهش می­دهد. در نهایت با استفاده از تقسیم­کننده­ توان طراحی­شده، یک آنتن آرایه شکافی صفحه­ای با سطح گلبرگ کناری dB 23- در فرکانس مرکزی GHz 60 با پهنای باند 1/4% طراحی می­شود. بهره آنتن در محدوده فرکانسی GHz 8/58 تا GHz 25/61 بیشتر از dB 7/21 با بازدهی بالاتر از 88% می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Design of Power Divider Based on Gap Waveguide Technology for Use in Low Sidelobe Level 60-GHz Slot Array Antenna

نویسندگان [English]

  • Mohammad Sadegh Dehghani 1
  • Davoud Zarifi 2
1 University of Kashan
2 University of Kashan
چکیده [English]

In this paper, a millimeter-wave power divider based on gap waveguide technology is designed for use in the feeding network of a slot array antenna. The simulation results demonstrate that the proposed structure has about 10% matching input bandwidth in the 58-64 GHz frequency range.The significant advantage of using gap waveguide technology is that there is no requirement of good electrical contact among different metallic parts of the low-loss structure which considerably simplifies the manufacturing processes and mechanical assembly at millimeter-waves applications. Finally, a planar slot array antenna is designed with sidelobe level of -23 dB and bandwidth of 4.1% at the center frequency of 60 GHz. The gain of antenna is higher than 21.7 dB over the operation bandwidth from 58.8 to 61.25 GHz, corresponding to efficiency larger than 88%.

کلیدواژه‌ها [English]

  • Power Divider
  • Gap Waveguide Technology
  • Slot Array Antenna
  • Low Sidelobe
[1]      P. Smulders, “Exploiting the 60 Ghz Band for Local Wireless Multimedia Access: Prospects And Future Directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140–147, Jan. 2002.##
 
[2]      S. K. Yong and C.-C. Chong, “An Overview of Multigigabit Wireless Through Millimeter Wave Technology: Potentials and Technical Challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, p. 078907, 2007.##
 
[3]      E. Levine, G. Malamud, S. Shtrikman, and D. Treves, “A Study of Microstrip Array Antennas with the Feed Network,” IEEE Trans. Antennas Propag., vol. 37, no. 4, pp. 426–434, Apr. 1989.##
 
[4]      M. Li and K.-M. Luk, “Low-Cost Wideband Microstrip Antenna Array for 60-Ghz Applications,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3012–3018, Jun. 2014.##
 
[5]      M. Nagasaka, S. Nakazawa, and S. Tanaka, “12/21ghz Dual-Band Feed Antenna for Satellite Broadcasting Receiving Reflector Antenna,” in Proc. ISAP, pp. 790–793, Oct./Nov. 2012.##
 
[6]      S. Cheng, H. Yousef, and H. Kratz, “79 Ghz Slot Antennas Based on Substrate Integrated Waveguides (SIW) in a Flexible Printed Circuit Board,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 64–71, Jan. 2009.##
 
[7]      J. Wu, Y. J. Cheng, and Y. Fan, “A Wideband High-Gain High-Efficiency Hybrid Integrated Plate Array Antenna for V-Band Inter-Satellite Links,” IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1225–1233, Apr. 2015.##
 
[8]      Y. Li and K.-M. Luk, “60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays,” IEEE Trans. Antennas Propag., vol. 63, no. 3, pp. 1075–1085, Mar. 2015.##
 
[9]      Y. Miura, J. Hirokawa, M. Ando, Y. Shibuya, and G. Yoshida, “Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 2844–2851, Aug. 2011.##
 
[10]   D. Kim, M. Zhang, J. Hirokawa, and M. Ando, “Design and fabrication of a dual-polarization waveguide slot array antenna with high isolation and high antenna efficiency for the 60 GHz band,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3019–3027, Jun. 2014.##
 
[11]   G.-L. Huang, S.-G. Zhou, T.-H. Chio, H.-T. Hui, and T.-S. Yeo, “A Low Profile and Low Sidelobe Wideband Slot Antenna Array Feb by an Amplitude-Tapering Waveguide Feed-Network,” IEEE Trans. Antennas Progag., vol. 63, no. 1, pp. 419–423, Jan. 2015.##
 
[12]   P.-S. Kildal, “Three Metamaterial-Based Gap Waveguides Between Parallel Metal Plates for Mm/Submm Waves,” in Proc. 3rd Eur. Conf. Antennas Propag., Berlin, Germany, pp. 28–32, Mar. 2009.##
 
[13]   P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, “Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates,” IEEE Antennas Wireless Propag. Lett., vol. 8, no. 4, pp. 84–87, Apr. 2009.##
 
[14]   A. U. Zaman and P.-S. Kildal, “Gap waveguides,” in Handbook of Antenna Technologies, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds. Singapore: Springer, 2016, pp. 3273–3347.##
 
[15]   A. U. Zaman and P.-S. Kildal, “Wide-Band Slot Antenna Arrays with Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2992–3001, Jun. 2014.##
 
[16]   D. Zarifi, A. Farahbakhsh, A. U. Zaman, and P. S. Kildal, “Design and Fabrication of a High-Gain 60-Ghz Corrugated Slot Antenna Array with Ridge Gap Waveguide Distribution Layer,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2905–2913, Jul. 2016.##
 
[17]   D. Zarifi, A. Farahbakhsh and A. U. Zaman, “A Gap Waveguide-Fed Wideband Patch Antenna Array for 60-Ghz Applications,” IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4875-4879, Sep. 2017.##
 
[18]   A. Farahbakhsh, D. Zarifi and A. U. Zaman, “A mmWave Wideband Slot Array Antenna Based on Ridge Gap Waveguide With 30%  bandwidth,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 1008-1013, Feb. 2018.##
 
[19]   Z. Shaterian, A. K. Horestani and J. R. Mohassel, “Design of Slot Array Antenna in Groove Gap Waveguide Technology ,” IET Microwave Antenna and Propagation., vol. 13, no. 8, pp. 1235-1239, June 2019.##
 
[20]   B. Ahmadi and A. Banai, “Direct Coupled Resonator Filters Realized by Gap Waveguide Technology,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3445–3452, Oct. 2015.##
 
[21]   D. Sun and J. Xu, “A Novel Iris Waveguide Bandpass Filter Using Air Gapped Waveguide Technology”, IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 475-477, July 2016.##
 
[22]   M. Rezaee and A. U. Zaman, " Realisation of Carved and Iris Groove Gap Waveguide Filter and E-Plane Diplexer for V-Band Radio Link Application," IET Microwave Antenna and Propagation, vol.11, no. 5, pp. 2109-2115, Oct. 2017.##
 
[23]   D. Zarifi, A. R. Shater, A. Ashrafian and M. Nasri, “Design of Ku-Band Diplexer Based on Groove Gap Waveguide Technology,” International Journal of RF and Microwave Computer-Aided Engineering, pp. 1-6, 2018.##
 
[24]   A. Karimi Nobandegani and S. E. Hosseini, "Design and Simulation of a Ku-Band Array Antenna Feed Network Based on Novel Ridge-Gap Waveguide Technology," Journal of Radar, vol.6, no. 2, pp. 1-6, 2019 (in Persian)##
 
[25]   S. I. Shams and A. Kishk, “Design of 3-dB Hybrid Coupler Based on RGW Technology,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3849-3855, Oct. 2017.##
 
[26]   D. Zarifi and A. R. Shater, “Design of a 3‐Db Directional Coupler Based on Groove Gap Waveguide Technology,”Microwave and Optical Technology Letters, vol. 59, no. 7, pp. 1597-1600, 2017.##
 
[27]   D. Zarifi, A. Farahbakhsh and A. U. Zaman, "Design and Fabrication of Wideband Millimeter- wave Directional Couplers with Different Coupling Factors Based on Gap Waveguide Technology," IEEE Access, vol. 7, pp. 88822-88829,  2019.##
 
[28]   A.U. Zaman, T. Vukusic, Alexanderson, M., et al. "Gap Waveguide PMC Packaging for Improved Isolation of Circuit Components in High Frequency Microwave Modules", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 1, pp. 16–25, 2014.##
 
[29]   R. S. Elliot, Antenna Theory and Design, Wiley, New Jersey, 2003, pp. 141-147.##
 
[30]   A. Khaleghi, Z. TalePour and M. Ramazan, "Resonant Slot Antenna Array on a Ridge Gap Waveguide," IET Microwaves Antennas Propag., vol. 11, no. 8, pp. 1092-1097, 2017.##
 
[31]   S. Park, Y. Tsunemitsu, J. Hirokawa and M. Ando, “Center Feed Single Layer Slotted Waveguide Array,” IEEE Trans. Antennas Propag., Vol. 54, No. 5, pp. 1474-1480, May 2006.##
 
[32]   Junfeng Xu, Wei Hong, Pang Chen, Ke Wu: “Design and Implementation of Low Sidelobe Substrate Integrated Waveguide Longitudinal Slot Array Antennas”, IET Microw. Antennas Propag., Vol. 3, No.5, pp. 790-797, 2009.##
 
[33]   H. Yang, “Improved Design of  Low Sidelobe Substrate Integrated Waveguide Longitudinal Slot Array,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 237–240, 2015.##
 
J. Wang, and Y. J. Cheng, “W-Band High Gain Slot Array Antenna with Low Sidelobe Level,” IEEE 5th Asia-Pacific Conference on Antennas and Propagation, pp. 27-28, 2016.##