[1] G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, S. R. Kirchner, H. J. Kluge, and G. W. Drake, “Nuclear Charge Radii of L i 8, 9 Determined by Laser Spectroscopy,” Phys. Rev. Lett., vol. 93 pp. 113002-113005, 2004.##
[2] R. Sanchez, W. Nörtershäuser, G. Ewald, D. Albers, J. Behr, P. Bricault, and G. W. Drake, “Nuclear Charge Radii of Li 9, 11: The Influence of Halo Neutrons,” Phys. Rev. Lett., vol. 96 pp. 033002-033006, 2006.##
[3] A. Gumberidze, T. Stöhlker, H. F. Beyer, F. Bosch, A. Bräuning-Demian, S. Hagmann, and W. Quint, “X-ray Spectroscopy of Highly-Charged Heavy Ions at FAIR,” Nucl. Instrum. Methods Phys. Res. B., vol. 267 pp. 248-250, 2009.##
[4] M. Mohebbi, “Controlling the Ionization and Recombination Rates of an Electron in Preexcited Ions to Generate an Intense Isolated Sub-4-as Pulse in a Multicycle Regime,” Phys. Rev. A, vol. 91 pp. 023835-023846, 2015.##
[5] H. Ebadian, M. Mohebbi, “Plasmonic Nanostructure Assisted HHG in NIR Spectrum and Thermal Analysis,” J. Phys. D: Appl. Phys., vol. 51 pp. 075307-075315, 2018.##
[6] A. Scrinzi, M. Y. Ivanov, R. Kienberger, D. M. Villeneuve, “Attosecond Physics,” J. Phys. B, vol. 39 pp. 1-42, 2006.##
[7] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme Ultraviolet High-harmonic Spectroscopy of Solids,” Nature, vol. 521 pp. 498–502, 2015.##
[8] R. Silva, I. V.Blinov, A. N. Rubtsov, O. Smirnova, and M. Ivanov, “High-harmonic Spectroscopy of Ultrafast Many-body Dynamics in Strongly Correlated Systems,” Nat. Photon., vol. 12 pp. 266–270, 2018.##
[9] E. Malm, H. Wikmark, B. Pfau, P. Villanueva-Perez, P. Rudawski, J. Peschel, and A. L’Huillier, “Singleshot Polychromatic Coherent Diffractive Imaging with a High-order Harmonic Source,” Opt. Exp., vol. 28 pp. 394-404, 2020.##
[10] S. R. Leone, C. W. McCurdy, J. Burgdörfer, L. S. Cederbaum, Z. Chang, N. Dudovich, and U. Keller, “What Will it Take to Observe Processes In'real Time'?,” Nat. Photon., vol. 8 pp. 162-166, 2014.##
[11] F. Krausz, and M. I. Stockman, “Attosecond Metrology: from Electron Capture to Future Signal Processing,” Nat. Photon., vol. 8 pp. 205-213, 2014.##
[12] T. Zuo, A. D. Bandrauk, and P. B. Corkum, “Laser-Induced Electron Diffraction: a New Tool for Probing Ultrafast Molecular Dynamics,” Chem. Phys. Lett., vol. 259 pp. 313-320, 1996.##
[13] R. Kienberger, E. Goulierlmakis, M. Viberacker, A. Baltuska, V. Yakovlet, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Heinzmann, M. Dresher, and F. Krausz, “Attomic Transient Recorder,” Nature, vol. 427 pp. 817-821, 2004.##
[14] M. Protopapas, C. H. Keitel, and P. L. Knight, “Attomic Physics with Super-High Intensity Laser,” Rep. Prog. Phys., vol. 60 pp. 486-389, 1997.##
[15] P. B. Corkum, and F. Krausz, “Attosecond Science,” Nat. Phys., vol. 3 pp. 381-387, 2007.##
[16] S. Kim, J. Jin, Y. J. Kim, I. Park, Y. Kim, and S. W. Kim, “High-harmonic Generation by Resonant Plasmon Field Enhanced,” Nature, vol. 453 pp. 757-760, 2008.##
[17] H. Ebadian, and M. Mohebbi, “Extending the High-order-Harmonic Spectrum Using Surface Plasmon Polaritons,” Phys. Rev. A, vol. 96 pp. 023415-023423, 2017.##
[18] A. Husakou, and J. Herrmann, “Quasi-phase-matched High-harmonic Generation in Composites of Metal Nanoparticles and a Noble Gas,” Phys. Rev. A, vol. 90 pp. 023831-023839, 2014.##
[19] F. Submann, and M. F. Kling, “Attosecond Nanoplasmonic Streaking of Localized Field Near Nanosphere,” Phys. Rev. B, vol. 84 pp. 121406-121410, 2011.##
[20] M. F. Ciappina, T. Shaaran, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, and M. Lewenstein, “High Energy Photoelectron Emission from Gases Using Plasmonic Enhanced Near-fields,” Laser Phys. Lett., vol. 10 pp. 105302-105308, 2013.##
[21] T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, and M. Lewenstein, “High-order-harmonic Generation by Enhanced Plasmonic Near-fields in Metal Nanoparticles,” Phys. Rev. A, vol. 87 pp. 041402-041407, 2013.##
[22] S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, and S. A. Trushin, “Controlled Near-field Enhanced Electron Acceleration from Dielectric Nanospheres with Intense Few-cycle Laser Fields,” Nat. Phys., vol. 7 pp. 656-662, 2011.##
[23] I. Y. Park, J. Choi, D. H. Lee, S. Han, S. Kim, and S. W. Kim “Generation of EUV Radiation by Plasmonic Field Enhancement Using Nano‐structured Bowties and Funnel‐waveguides,” Ann. Phys., vol. 525 pp. 87-96, 2013.##
[24] M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced Atomic Line Emission,” Nature, vol. 485 pp. E1–E2, 2012.##
[25] Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient Second Harmonic Generation in Gold–Silicon Core–Shell Nanostructures,” Opt. Express, vol. 26 pp. 5835-5844, 2018.##
[26] Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light Guiding and Switching Using Eccentric Core-shell Geometries,” Sci. Rep., vol. 7 pp. 1-10, 2017.##
[27] M. Alsawafta, M. Wahbeh, and V. V. Truong, “PlasmonicModes and Optical Properties of Gold and Silver Ellipsoidal Nanoparticles by the Discrete Dipole Approximation,” J. Nanomater., vol. 2012 pp. 457968-457967, 2012.##
[28] A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, and J. J. Sáenz, “Strong Magnetic Response of Submicron Silicon Particles in the Infrared,” Opt. Exp., vol. 19 pp. 4815-4826, 2017.##
[29] I. Staude, and J. Schilling, “Metamaterial-inspired Silicon Nanophotonics,” Nat. Photonics vol.11 pp. 274–284 2017.##
[30] I. Staude, and J. Schilling, “Metamaterial-inspired Silicon Nanophotonics,” Nat. Photonics, vol. 11, pp. 274–284, 2017.##
[31] J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics, vol. 4 pp. 535–544, 2010.##
[32] Z. J. Yang, Q. Zhao, and J. He, “Boosting Magnetic Field Enhancement with Radiative Couplings of Magnetic Modes in Dielectric Nanostructures,” Opt. Express, vol. 25 pp. 15927–15937, 2017.##
[33] F. Ruffino, A. Pugliara, E. Carria, C. Bongiorno, and M. G. Grimaldi, “Light Scattering Calculations from Au and Au/SiO2 Core/shell Nanoparticles,” Physica E: Low Dimens. Syst. Nanostruct., vol. 47 pp. 25-33, 2013.##
[34] Y. Tsuchimoto, T. A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the Visible Electromagnetic Resonances of Si/SiO2 Dielectric Core–shell Nanoparticles by Thermal Oxidation,” Small, vol. 11 pp. 4844-4849, 2015.##
[35] R. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional Control of Scattering by All-dielectric Core-shell Spheres,” Opt. Lett. vol. 40 pp. 585-588, 2015.##
[36] W. Liu, “Ultra-directional Super-Scattering of Homogenous Spherical Particles with Radial Anisotropy,” Opt. Express, vol. 23 pp.14734-14743, 2015.##
[37] Y. Tsuchimoto, T. A. Yano, T. Hayashi, and M. Hara, “Fano Resonant All-dielectric Core/shell Nanoparticles with Ultrahigh Scattering Directionality in the Visible Region,” Opt. Express, vol. 24 pp. 14451-14462, 2016.##
[38] M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic Scattering by Magnetic Spheres,” J. Opt. Soc. Am., vol. 73 pp. 765-767, 1983.##
[39] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon Enhanced Silicon Solar Cells,” J.Appl. Phys. vol. 101 pp. 093105-093112, 2007.##
[40] M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced Absorption in Au Nanoparticles/a-Si: H/c-Si Heterojunction Solar Cells Exploiting Au Surface Plasmon Resonance,” Sol. EnergyMater. Sol. Cells, vol. 93 pp. 1749-1754, 2009.##
[41] Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric Response of Magnetodielectric Core–Shell Nanoparticles: an Analysis of Scattering Directionality and Sensing,” Nanotechnology, vol. 27 pp. 234002-234010, 2016.##
[42] C. F. Bohren, and D. R. Huffman, “Absorption andScattering of Light by Small Particles,” John Wiley & Sons, 2008.##
[43] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics, vol. 37 pp. 5271-5283, 1998.##
[44] B. Ung, and S. Yunlong “Interference of Surface Waves in a Metallic Nanoslit,” Opt. Exp., vol. 15 pp.1182-1190, 2007.##
[45] K. J. Schafer, and K. C. Kulander, “High Harmonic Generation from Ultrafast Pump Lasers,” Phys. Rev.Lett., vol. 78 pp. 638-655, 1997.##
[46] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” 668-677, 2003.##
[47] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer Science & Business Media, 2007. ##
[48] J. M. Sanz, D. A. D. L. Ortiz, R. De La Osa, Alcaraz, J. M. Saiz, F. González, A. S. Brown, and F. Moreno, “UV Plasmonic Behavior of Various Metal Nanoparticles in the Near-and Far-Field Regimes: Geometry and Substrate Effects,” J. Phys. Chem. C, vol. 117 pp. 19606-19615, 2013.##
[49] M. D. Feit, J. A. Fleck Jr, and A. Steiger, “Solution of the Schrödinger Equation by a Spectral Method,” J. Comput. Phys., vol. 47 pp. 412-433, 1982.##
[50] Q. Su, and J. H. Eberly, “Model Atom for Multiphoton Physics,” Phys. Rev. A, vol. 44 pp. 5997-6009, 1991.##
[51] K. J. Schafer, and K. C. Kulander, “High Harmonic Generation from Ultrafast Pump Lasers,” Phys. Rev. Lett. vol. 78 pp.638-655, 1997.##
[52] K. J. Schafer, and K. C. Kulander, “High Harmonic Generation from Ultrafast Pump Lasers,” Phys. Rev. Lett., vol. 78 pp. 638-655, 1997.##
[53] A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric Response of Magnetodielectric Core–shell Nanoparticles: an Analysis of Scattering Directionality and Sensing,” Nanotechnology, vol. 27 pp. 234002-234010, 2016.##