Extraction of Electromagnetic Parameters of Metamaterials Based on the State-Space Approach

Document Type : Original Article

Abstract

This  paper deals  with  the introduction  of  an  approach  for the  electromagnetic  characterization  of  metamaterials
based  on  the  state  space  approach.  The  state  space  approach  is  commonly  used  to  deal  with  the  problems  of  plane
wave scattering from planar layered media, but its application in inverse problems has remained an almost untouched
topic  in  the  literature.  The  proposed  method  is  based  on  the  state  transition  matrix  and  its  properties  which  allows
avoiding  nonlinearity  and  complexity  of  the  problem.  The  main  difference  with  respect  to  other  well-established  re-
trieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer ma-
trix of the  slab as  opposed to the  conventional calculation of  the propagation  constant  and impedance of the  modes
supported  by  the  medium.  To validate  the proposed  method, constitutive parameters  of a  metamaterial  structure are
retrieved at microwave frequencies. The results show that the proposed method is robust and reliable. 

Keywords


[1]  J.  B.  Pendry,  A.  J.  Holden,  D.  J.  Robbins,  and  W.  J.
Stewart,  “Magnetism  from  conductors  and  enhanced
nonlinear phenomena,” IEEE Trans. Microwave Theory
Tech., vol. 47, no. 11, pp. 2075-2084, 1999. ##
[2]  B.  I.  Popa  and  S.  A.  Cummer,  “Determining  the  effec-tive  electromagnetic  properties  of  negative-refractive-index metamaterials from internal fields,” Phys. Rev. B,  
72: 165102, 2005. ##
[3]  D. R. Smith and J. B. Pendry, “Homogenization of met-amaterials by field averaging,” Journal of the     Optical
Society of America B, vol. 23, no. 3, pp. 391-402, 2006. ##
[4]  J.-M. Lerat, N. Mallejac, and O. Acher, “Determination
of  the  effective  parameters  of  a  metamaterial  by  field
summation  method,” Journal  of  Applied  Physics,  vol.
100, no. 8, pp. 1-9, 2006. ##
[5]  O. Acher, J.-M. Lerat, and N. Mallejac, “Evaluation and
illustration of the properties of metamaterials using field
summation,” Optics  Express,  vol.  15,  no.  3,  pp.  1096-1106, 2007. ##
[6]  D. R. Smith, S. Schultz, P. Markos, and C. M.   Soukou-lis, “Determination of effective permittivity and permea-bility  of  metamaterials  from  reflection  and      transmis-sion  coefficients,” Physical  Review  B,  vol.  65:195104,
2002. ##
[7]  X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and
J.  A.  Kong,  “Robust  method  to  retrieve  the  constitutive
effective parameters of metamaterials,” Physical Review
E, 70:016608, 2004. ##
[8]  D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C.
Tarot, “Effective parameters of resonant negative refrac-tive  index  metamaterials:  interpretation  and  validity,”
Journal of Applied Physics, 98:063505, 2005. ##
[9]  X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk,
“Retrieval  of  the  effective  constitutive  parameters  of
bianisotropic  metamaterials,” Phys.  Rev.  E,  Stat.  Phys.
Plasmas  Fluids  Relat.  Interdiscip.  Top.,  vol.  71,  pp.
46610–46618, 2005. ##
[10]  Z.  Li,  K.  Aydin,  and  E.  Ozbay,  “Determination  of  the
effective  constitutive  parameters  of  bianisotropic  met-amaterials  from  reflection  and  transmission  coeffi-cients,” Phys. Rev. E 79, 026610, 2009. ##
[11]  C.  Y.  Chen  and  K.W.Whites,  “Effective  constitutive
parameters  for  an  artificial  uniaxial  bianisotrpic  chiral
medium,” J.  Electromagn.  Waves  Appl.,  vol.  10,  pp.
1363–1388, 1996. ##
[12]  X.  Chen,  T.  M.  Grzegorczyk,  and  J.  A.  Kong,
“Optimization  approach  to  the  retrieval  of  the  constitu-tive  parameters  of  slab  of  general  bianisotropic  medi-um,” Progr. Electromagn. Res., vol. 60, pp. 1–18, 2006. ##
[13]  P. N. Paraskevopoulos, “Modern Control Engineering,”
Marcel Dekker, New York, 2002. ##
[14]  M.  A.  Morgan,  D.  L.  Fisher,  and  E.  A.  Milne,
“Electromagnetic  Scattering  by  Stratified                 
Inhomogeneous Anisotropic Media,” IEEE Transactions
on  Antennas  and  Propagation,  vol.  35,  no.  2,  pp.  191-197, 1987. ##
[15]  J.  L.  Tsalamengas,  “Interaction  of  Electromagnetic
Waves  with  General  Bianisotropic  Slabs,” IEEE  Trans.
Microw.  Theory  Tech.,  vol.  40,  no.  10,  pp.  1870-1878,
1992. ##
[16]  H.  D.  Yang,  “A  Spectral  Recursive  Transformation
Method  for  Electromagnetic  Waves  in  Generalized  
Anisotropic  Layered  Media,” IEEE  Transactions  on
Antennas And Propagation, vol. 45, no. 3, pp. 520-526,
1997.##