Simulation of field emission current in order to diagnosis internal pressure of vacuuminterrupters

Document Type : Original Article

Abstract

Condition monitoring of vacuum circuit breaker is one of the important factor to determine its life time. Internal pres-
sure  of  vacuum  interrupter  is  the  main  parameter  of  vacuum  circuit  breaker  conditioning .Rise  of  internal  pressure
recent decades many internal pressure determining methods have been researched to evaluate the influences of differ-
ent parameters. Although most of them are based on experimental tests but none of them was a satisfying and reliable
method to give enough information about residual vacuum pressure. Thus, the field emission current is modelled and
simulated in this paper using plasma modelling by particle in cell (PIC) method in order to determine the relation of
current and vacuum pressure. The simulation results demonstrate that pulsed current with field emission current used
for diagnosis vacuum pressure of vacuum interrupter.

Keywords


[3]
atmospheric  air  between  closely  spaced  (0.2  um-40um)
packaging technologies, vol. 25, pp. 390-396, 2002.##
[5] G. C. Damstra, R. P. P. Smeets, and H. B. F. Poulussen,
Trans.  Dielectrics  and  Electrical  Insulation,  vol.  2,  pp.
198-201, 1995.##
[6]
Int.  Symp.  on  Discharges  and  Electrical  Insulation  in
Vacuum, Eindhoven, 1998.##
[7]
the vacuum condition in medium voltage vacuum circuit
-731,
2008.##
[8]
currents  immediately after arc  polishing  of  contacts
Method  for  Internal-pressure  Diagnostics  of  Vacuum
Time(sec)
Pressure (Millitorr)
Voltage and Collected Current
Maximum amplitude of Current vs. pressure
Time(sec)
17
28, pp. 700-705, 1993.##
[9] S.  V.  Sydorenkov,  A.  S.  Baturin,  and  E.  P.  Sheshin,
emissionmethodofpressuredynamicsregistratio
ninvacuum
Insulation in Vacuum (ISDEIV), pp. 568-571, 2002.##
[10] F.  R.  Frontzek,  D.  König,  and  R.  Heinemeyer,
vacuum  interrupters  after  long-Trans. on Electr. Insulation, vol. 28, pp. 635-641, 1993 .##
[11] W.  F.  H.  Merck,  G.  C.  Damstra,  and  R.  J.  B.  Gruntjes,
Vacuum (ISDEIV), pp. 506-509, 1998.##
[12] W. E. H. Merck, G. C. Damstra, C. E. Bouwmeester, R.
Dielectrics  and  Electrical  Insulation,  vol.  6,  no.  4,  pp.
400-404, 1999.##
[13]
Properties  in  Low  Vacuum  and  Vacuum  Monitoring
Electrical Insulation in Vacuum (ISDEIV), pp. 181-184,
2006.##
[14] M.  Kamarol,  S.  Ohtsuka,  M.  Hikita,  H.  Saitou,  and  M.
Dielectrics and Electrical Insulation, pp. 593-599, 2007.##
[15] L. T. Falkingham, R. Reeves, C. H. Gill, and S. Mistry,
Interrupters-Part1-variations  in electric
Discharges  and  Electrical  Insulation  in  Vacuum
(ISDEIV), pp. 87-90, 2008.##
[16] L.  T.  Falkingham,  R.  Reeves,  C.H.  Gill,  and  S.  Mistry,
interrupters:  part2-Discharges  and  Electrical  Insulation  in  Vacuum
(ISDEIV), pp. 214-217, 2010.##
[17]
Power  Systems  Conference  and  Exposition,  pp.  1851-1855, 2006.##
[18] F.  Xing-ming,  D.  Guang-bo,  H.  Zhi-Chao,  L.
Xu-dong,  Z.  Xin,  and  Z.  Ji-vacuum  interrupts  inner  pressure  on-line  condition
Insulation in Vacuum (ISDEIV), pp. 142-145, 2010.##
[19] -line
trans.  Dielectric  and  Electrical  Insulation,  vol.  14,  pp.
179-184, 2007.##
[20]
es  and  Electrical  Insulation  in  Vacuum  (ISDEIV),  pp.
775-778, 2000.##
[21] M.  Koochackzadeh,  V.  Hinrichsen,  R.  Smeets,  and  A.
Electrical Insulation, vol. 18, pp. 910-917, 2011.##
[22] M.  Koochackzadeh,  V.  Hinrichsen,  R.  Smeets,##