Theoretical and Experimental Evaluation of Equivalent Initial Inductance and Resistance of Helical Flux Compression Generators and their Dependence on Frequency Using 2-D Filamentary Meth

Document Type : Original Article

Abstract

This  paper  presents  an  approach  to  calculate  the  initial  equivalent  inductance  and  resistance  of  helical  flux     
compression  generators  and  their    dependence  on  frequency  accurately.  This  approach  is  based  on  the            
2-D filamentary method in frequency domain. By using this method, it is possible   to consider both the effects of the
armature presence and frequency on the inductance and resistance of helical flux compression generators. In order to
consider the eddy current effects on the equivalent resistance and inductance of the helical coil, we introduce an eddy
current coefficient using the filamentary method. The  calculation results show that the presence of the armature not
only  decreases  the  equivalent  inductance  of  the  HFCG, but  also  increases  its  equivalent resistance.  The  latter  effect
has  not  been  discussed  previously  in  the  open  literature.  To  verify  our  derived  equations,  a  small  scale  HFCG  was
built  and  its  inductance,  resistance  and  impedance were  measured  at  different  frequencies.  It  is  shown that  the       
calculation results demonstrate a good agreement with measurement results.

Keywords


[1]  C.  M.  Fowlers,  R.  S.  Caird,    and  W.  B.  Garn,  “An  
Introduction  to  Explosive  Magnetic  Flux  Compression
Generators,” Los Alamos Report LA-5890-MS, pp. 1-7,
1975. ##
[2]  A.  A.  Neuber  and  J.  C.  Dickens,  “Magnetic  Flux
Compression Generators,” Proceeding of The IEEE, vol.
92, no. 7, pp. 1205-1215, 2004. ##
[3]  S. Younger, I. Lindemuth, R. Reinovsky, C. M. Fowler,
J.  Goforth,  and  C.  Ekdahi,  “Scientific  Collaboratings
Between Los Alamos and Arzamas-16 Using Explosive
–Driven  Flux  compression  Generators,”  Los  Alamos
Science, no. 24, pp. 52-54, 1996. ##
[4]  B. M. Novac, I. R. Smith, H. R. Stewardson, P. Senior,
V.  V.  Vadher,  and  Enache,  “Design  Construction  and
Testing  of  Explosive-driven  Helical  Generators,”  J.
Appl. Phys.,vol. 28, pp. 807-823, 1995. ##
[5]  A. A. Neuber, J. Dickens, J. B. Cornette, K. Jamison, E.
R. Parkinson, M. Giesselmann, P. Worsey, J. Baird, M.
Schmidt,  and  M.  Kristiansen,  “Electrical  Behavior  of
Simple  Helical  Flux  Compression  Generator  for  Code
Benchmarking,” IEEE Trans. Plasma Sci., vol. 29, no. 4,
pp. 573-579, August 2001. ##
[6]  J.  C.  Hernandez,  A.  A.  Neuber,  J.  C.  Dickens,  and  M.
Kristiansen, “Quantification of Ohmic and Intrinsic Flux
Losses  in  Helical  Flux  Compression  Generators,”  IEEE
Trans.  Plasma  Sci.,  vol.  32,  no.  5,  pp.  1902-1907,
October 2004. ##
[7]  A.  A.  Neuber,  J.  C.  Hernandez,  T.  A.  Holt,  J.  C.
Dickens,  and  M.    Kristiansen,  “Physical  Efficiency
Limits  of  Inch-Sized  Helical  MFCGs,”  in  Dig.  Tech.
Papers  14th  IEEE  Int.  Pulsed  Power  Conf.,  vol.  1,  pp.
413-416, 2003. ##
[8]  L.  L.  Altgilbers,  M.  D.  Brown,  I.  Grishnaev,  B.  M.
Novac,  I.  R.  Smith,  I.  Tkach,  and  Y.  Tkach,
“Magnetocumulative  Generators,”  NewYork:
Springer – Verlag, 1999. ##
[9]  A.  A.  Neuber,  “  Explosivley  Driven  Pulsed  Power,”
Helical  Magnetic Flux Compression Generators,  Berlin,
Heidel berg: Springer- Verlag, 2005. ##
[10]  B. M. Novac and I. R. Smith, “Explosive-Driven Pulsed
Power  Generation  Program  (MURI):2-Dimensional
Simulation  of  Helical  Gernerators,”  14th  IEEE  Int.
Pulsed Power Conf., pp. 110-113, 2003. ##
[11]  J.  C.  Maxwell,  “A  Treatise  on  Electricity  and  
Magnetism  Oxford  Pub.,”  London,  vol.  2,  pp.  305-307,
1878. ##
[12]  M. H. Khanzade, Y.  Alinejad-Beromi, and A. Shoulaie,
“Accurate  Modeling  of  the  Eddy  Current  Effects  in
Helical  Flux  Compression  Generators  Using ##
2-Dimensional  Filamentary  Method  in  Frequency
Domain,”  Int.  Review  on  Modelling  and  Simulations,
vol. 2, no. 4, pp. 433-437, 2009.##