Cramer Rao Lower Bound (CRLB) and Ambiguity Function for Planar Antenna Array with Antenna Radiation Pattern Consideration

Document Type : Original Article

Abstract

Direction-of-arrival  estimation  is  one  of  the  most  important  tasks  in  adaptive  antenna  array  systems.  In
designing  such  systems,  the  goal  is achieving  the  best  direction  finding  performance  with  minimum  number  of
elements.  For  studying  the  direction-of-arrival  performance  in  antenna  arrays,  the  Cramer-Rao  Lower  Bound
(CRLB) method is a reasonable approach. With accurate signal reception modeling in antenna arrays, one can
be reached out more accurate CRLB performance. Concerning real antenna radiation pattern for every element
of  antenna  array  that  is  achieved  via  electromagnetic  simulation  software  and  inserting  in  the  system  signal
reception model,  CRLB  behavior  analysis  of  a  real  antenna  array  that  perform  direction-of-Arrival  estimation
algorithm can be done. In this paper, the CRLB study of a typical 4-elements GPS antenna array at L1 frequency
band  is  done.  Furthermore,  the  ambiguity  resolution  performance  of  this  antenna  array  with  full  signal
reception modeling is demonstrated. 

Keywords


[1]Fu,  Z.,  et  al.  "Suppression  of  multipath  and  jamming
signals  by  digital  beamforming  for  GPS/Galileo
applications." GPS solutions 6.4 (2003): 257-264. ##
[2]  Alexiou,  Angeliki,  and  Martin  Haardt.  "Smart  antenna
technologies  for  future  wireless  systems:  trends  and
challenges."  Communications  Magazine,  IEEE  42.9
(2004): 90-97. ##
[3]  Jeng, S. S., and H. P. Lin. "Smart antenna system and its
application  in  low-Earth-orbit  satellite  communication
systems  Microwaves."  Antennas  and  Propagation,  IEE
Proceedings 146.2 (1999). ##
[4]  Gross,  Frank.  "Smart  antennas  for  wireless
communications." (2005). ##
[5]  Longstaff,  I.  D.,  P.  E.  K.  Chow,  and  D.  E.  N.  Davies.
"Directional  properties  of  circular  arrays."  Electrical
Engineers,  Proceedings  of  the  Institution  of  114.6
(1967): 713-718. ##
[6]  Lim,  J.  C.,  and  D.  E.  N.  Davies.  "Synthesis  of  a  single
null  response  in  an  otherwise  omnidirectional  pattern
using a circular array." Electrical Engineers, Proceedings
of the Institution of 122.4 (1975): 349-352. ##
[7]  Kim,  Kyungjung,  et  al.  "DOA  estimation  utilizing
directive  elements  on  a  conformal  surface."  Radar
Conference, 2003. Proceedings of the 2003 IEEE. IEEE,
2003. ##
[8]  Gazzah,  Houcem,  and  Karim  Abed-Meraim.  "Optimum
ambiguity-free  directional  and  omnidirectional  planar
antenna  arrays  for  DOA  estimation."  Signal  Processing,
IEEE Transactions on 57.10 (2009): 3942-3953. ##
[9]  Sanudin, Rahmat, et al. "Analysis of DOA estimation for
directional  and  isotropic  antenna  arrays."  Antennas  and
Propagation  Conference  (LAPC),  2011  Loughborough.
IEEE, 2011. ##
[10]  Jackson,  Brad  R.,  et  al.  "Direction  of  arrival  estimation
using  directive  antennas  in  uniform  circular  arrays."
Antennas  and  Propagation,  IEEE  Transactions  on  63.2
(2015): 736-747. ##
[11]  Gazzah,  Houcem.  "Parameter  estimation  using  antenna
arrays  of  directional  sensors."  Communications,  Signal
Processing,  and  their  Applications  (ICCSPA),  2015
International Conference on. IEEE, 2015. ##
[12]  Van  Trees,  Harry  L.  Detection,  estimation,  and
modulation theory. John Wiley & Sons, 2004. ##
[13]  Gazzah,  Houcem,  and Sylvie  Marcos.  "Cramer-Rao
bounds  for  antenna  array  design."  Signal  Processing,
IEEE Transactions on 54.1 (2006): 336-345. ##
[14]  Schmidt,  Ralph  Otto.  "A  signal  subspace  approach  to
multiple  emitter  location  spectral  estimation."  Ph.  D.
Thesis, Stanford University (1981). ##
[15]  Baysal, Ülkü, and Randolph L. Moses. "On the geometry
of  isotropic  arrays."  Signal  Processing,  IEEE
Transactions on 51.6 (2003): 1469-1478. ##
[16]  Gavish,  Motti,  and  Anthony  J.  Weiss.  "Array  geometry
for  ambiguity  resolution  in direction finding."  Antennas
and  Propagation,  IEEE  Transactions  on  44.6  (1996):
889-895. ##
[17]  Godara,  Lal  C.,  and  Antonio  Cantoni.  "Uniqueness  and
linear  independence  of  steering  vectors  in  array  space."
The  Journal  of  the  Acoustical  Society  of  America  70.2
(1981): 467-475. ##
[18]  Porat, Boaz, and Benjamin Friedlander. "Analysis of the
asymptotic relative efficiency of the MUSIC algorithm."
Acoustics,  Speech  and  Signal  Processing,  IEEE
Transactions on 36.4 (1988): 532-544. ##
[19]  “ANSYS  HFSS.”  [Online].  Available:
http://www.ansys.com/Products/Electronics/ANSYS-HFSS. ##
[20]  “MathWorks.”  [Online].  Available:
http://www.mathworks.com/products/matlab/##