Transient Analysis of Single-Conductor Overhead Lines Terminated to Grounded Arrester Considering Frequency Dependence of Electrical Parameters of Soil using Genetic Algorithm

Document Type : Original Article

Abstract

In  this  paper,  a  genetic  algorithm-based  approach  for  transient  analysis  of  single-conductor  overhead  line
connected  to  grounded  arrester  is  proposed.  In  analysis,  the  grounding  systems  are  buried  in  lossy  dispersive
soil,  i.e.,  the  electrical  parameters  of  soil  are  frequency-dependent. In  dealing  with  the  problem,  the  lightning
current pulse is first approximated by a finite set of sinusoidal harmonies in a time domain. Norton equivalent
circuit  viewed  across  the  arrester  is  then  computed  via  transmission line  model  (TLM).  Finally  analyzing  this
nonlinear circuit by genetic algorithm, transient voltage across the arrester is easily computed. Comparison of
the  achieved  transient  voltages  with  and  without  considering  dispersion  of  soil  shows  that  this  effect plays  an
important  role  in  selecting  lightning  arresters  and  the  insulation  coordination  study  of  power  systems.
Moreover, in comparison with arithmetic operator method (AOM), the run-time is reduced.

Keywords


[1]        R. F. Harrington, “Field Computation by Moment Methods,” Macmillan, New York, 1968.##
[2]        H. Janani et al, “Evaluation of Lightning-Induced Voltage on Overhead Lines with Nonlinear Loads using the Scattering Theory,” IEEE Transaction on. Power Delivery, vol. 21, no. 1, pp. 31-324, 2012.##
[3]        M. Akbari et al, “Evaluation of Lightning Electromagnetic Fields and their Induced Voltages on Overhead lines Considering the Frequency-dependence of Soil Electrical Parameters,” IEEE Transaction on Electromagnetic, Compatibility, vol. 55, no. 6, pp. 1210-1219, 2013.##
[4]        K. Sheshyekani et al, “Evaluation of Lightning-Induced Voltage on Multi-conductor Overhead Lines Located above a Lossy Dispersive Ground,” IEEE Transaction on Electromagnetic, Compatibility, vol. 55, no. 6, pp. 1210-1219, 2014.##
[5]        J. Mahseredjian, S. Dennetiere, L. Dube, B. Khodabakhchian, and L. Gerin-Lajoie, “On a new approach for the simulation of transients in power systems,” Elect. Power Syst. Res., vol. 77, no. 11, pp. 1514–1514, 2007.##
[6]        B. Gustavsen, and A. Semlyen, “Rational Approximation of Frequency Domain Responses By Vector Fitting,” IEEE Transaction on Power Delivery, vol. 14, no. 3, pp. 1051-1061, 1999.##
[7]        B. Gustavsen and A. Semlyen, “Enforcing Passivity for Admittance Matrices Approximated By Rational Functions,” IEEE Transaction on Power Delivery, vol. 16, no. 1, pp. 97-103, 2001.##
[8]        B. Gustavsen, “Improving the Pole Relocating Properties of Vector Fitting,” IEEE Transaction on Power Delivery, vol. 21, no. 3, pp. 1587-1590, 2006.##
[9]        K. Sheshyekani, S. H. Hesamedin Sadeghi, R. Moini, F. Rachidi, and M. Paolone, “Analysis of transmission lines with arrester termination, considering the frequency-dependence of grounding systems,” IEEE Transaction on Electromagnetic, Compatibility, vol. 51, no. 4, pp. 986-994, 2009.##
[10]     F. Rachidi, “A Review of Field-to-Transmission Line Coupling Models With Special Emphasis to  Lightning-Induced Voltages on Overhead Lines,” IEEE Transaction on Electromagnetic, Compatibility, vol. 54, no. 4, pp. 898–911, 2012.##
[11]     P. H. Frank et al, “Mathematical Foundations of Frequency-Domain Modeling of Nonlinear Circuits and Systems using the Arithmetic Operator Method,” International Journal of RF and Microwave Computer Aided Engineering, vol. 13, no. 5, pp. 473-495, 2003.##
[12]     Damir Cavka et al, “A comparison of frequency-dependent soil models: Application of analysis of grounding systems,” IEEE Transaction on Electromagnetic Compatibility, IEEE Trans. Power. Delivery, vol. 37, no. 2, pp. 127-135, 2015.##
[13]     S. Visacro et al., “Frequency Dependence of Soil Parameters: Experimental Results, Predicting Formula and Influence on the Lightning Response of Grounding Electrodes,” IEEE Transaction, Power Delivery, vol. 27, no. 2, pp. 927-935, 2012.##
[14]  A. Carlos Siqueira de Lima and C. Portela, “Inclusion of Frequency-Dependence Soil Parameters in Transmission-Line Modeling,” IEEE Transaction, Power Delivery, vol. 22, no. 1, pp. 492-499, 2007.##
[15]     M. Akbari, K. Sheshyekani, and M. R. Alemi, “The Effect of Frequency Dependence of Soil Electrical Parameters on the Lightning Performance of Grounding Systems,” IEEE Transaction on Electromagnetic Compatibility, vol. 55, no. 4, pp.  739–746, 2013.##
[16]     L. Liljestrand and E. Lindell, “Efficiency of Surge Arresters as Protective Devices against                Circuit-Breaker-Induced Overvoltages,” IEEE Transaction on Power Delivery, vol. 31, no. 4, pp. 1562-1570, 2016.##
[17]     A. Bayadi et al, “Parameter Identification of ZnO Arrester Models Based on Genetic Algorithms,” Electric Power System Research, New York: Elsevier, vol. 78, no. 1, pp. 1204-1208, 2008.##
[18]     S. A. Mass, “Nonlinear Microwave Circuits,” Artech House, Norwood, MA, 2003.##
[19]     R. L. Haupt, “An introduction to genetic algorithms for electromagnetics,” IEEE Antennas on Propagation. Magazine, vol. 37, no. 4, pp. 7–15, 1995.##
[20]  J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 39, pp.  7–21, 1997.
IEEE Guide for Application of Insulation Coordination, IEEE Standard 1313.2, 1999.##