Modeling of Vortex Flow of High Power Inductors Losses with Foliate Cores in Ground-Based Positioning System

Abstract

The Laurent local current transmitter of ground-based Positioning System uses several High power inductance
ferrite or  metal cores. Nonlinear behavior of these inductors  with  transient frequency variations in the case of
fluctuations  is  of  much  importance  in  flow  losses  and  in  the  efficiency  of  the  transmitter.  In  this  paper,  the
relations of vortex flow losses in high power solenoids with foliate cores are presented. On the other hand, it is
shown  that  these  relations  can  be  used  as  a  reference  model  at  different  frequencies  for  high-power  inductors
with  foliate  cores.  The  results  of  modeling  and  simulation  show  the  effects  of  nonlinear  parameters  in  the
inductor on the performance of the transmitter's inductors. The paper will reveal that the 100 kHz frequency of
the Laurent flow transmitter is the boundary of reducing the rate of loss of vortex flow and increasing efficiency
in  this  transmitter.It also shows that under this frequency, 

Keywords


[1]     Z. Lili, Xi. Xiaoli, J. Zhang, and Y. Pu, “A New Method for Loran-C ASF Calculation over Irregular Terrain,” IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1738-1744, 2013.
[2]      G. Johnson, R. Shalaev, R. Hartnett, P. Swaszek, and M. Narins, “Can Loran meet GPS backup requirements?,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 2, pp. 3-12, 2005.
[3]     C. L. Sherman, B. B. Peterson, C. O. Lee Boyce Jr., and K. Enge, Per, “Loran Coverage Availability Simulation Tool,” In Proceedings of the Royal Institute of Navigation NAV08/ International Loran Association 37th Annual Meeting, London, UK, Oct. 2008.
[4]     G. W. Johnson, P. F. Swaszek, R. J. Hartnett, R. Shalaev, and M. Wiggins, “An Evaluation of Eloran As A Backup to GPS,” IEEE Conference on Technologies for Homeland Security, May 2007.
[5]     C. L. Sherman, R. Wenzel, G. Johnson, and P. K. Enge, “Assessment of The Methodology for Bounding Loran     Tem- Poral ASF For Aviation,” In Proceedings of the Institute of Navigation National Technical Meeting, San Diego, CA, 2008.
[6]     J. Avila-Montes, D. Campos-Gaona, E. Melgoza Vázquez, and J. R. Rodríguez-Rodríguez, “A Novel Compensation Scheme Based on a Virtual Air Gap Variable Reactor for AC Voltage Control,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6547-6555, 2014.
[7]     M. Nazari-Heris, H. Nourmohamadi, M. Abapour, and M. Sabahi, “Multilevel Nonsuperconducting Fault Current Limiter: Analysis and Practical Feasibility,” IEEE Transactions on Power Electronics, vol. 32, no. 8, pp.      6059-6068, 2017.
[8]     J. Zhao, P. Yue, L. Grekhov, and X. Ma, “Current Effects on The Power Losses of High-Speed Solenoid Valve for Common-Rail Injector,” Applied Thermal Engineering, vol. 128, pp. 1579-158, 2018.
[9]     Z. vDeng, Y.  Kang, J. Zhang, and K. Song, “Multi-source Effect in Magnetizing-based Eddy Current Testing Sensor for Surface Crack in Ferromagnetic Materials,” Sensors and Actuators A: Physical, vol. 271, pp. 24-36, 2018.
[10]  C. Fernandez, Z. Pavlovic, S. Kulkarni, P. McCloskey, and C. O'Mathuna, “Novel High Frequency Electrical Characterization technique for Magnetic Passive Devices,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 621-628, 2018.
[11]  M. E. Mosleh and M. R. Besmi, “Calculation of the Current and Efficiency of High Frequency MCG Generator in Time of Explosion Progress by Using New Method of NUEC,” Canadian Journal IEEE, vol. 2, no. 7, pp. 332-339, 2011.
[12]  P. N. Murgatroyd, “The Brooks Inductor: A Study of Optimal Solenoid Cross-Sections,” IEEE Proceedings B (Electric Power Applications), vol. 133, no. 5, 1986.
[13]  D. Egorov, I. Petrov, J. Link, R. Stern, and J. J. Pyrhönen, “Model-Based Hysteresis Loss Assessment in PMSMs With Ferrite Magnets,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 179-188, 2018.
[14]  A. W. Barr, “Calculation of Frequency-Dependent Impedance for Conductors of Rectangular Cross Section,” AMP Journal of Technology, vol. 1, pp. 91-100, 2004.
[15]  S. C. Lo, “Broadcasting GPS Integrity Information Using Loran-C,” Ph.D. Thesis, Stanford University, 2002.
[16]  Patent no: 7,064,705 B2, Application no: 10/877000, Dated: June 20, 2006.
[17]  M. R. Alizadeh Pahlavani, “New Approach in Designing the Generators of the Current Compressor with Increasing the Energy Efficiency and Signal Quality of the Lauren-based Ground Positioning System,” Electromagnetics Journal, Applied, vol. 3, no. 3, pp. 1-10, 2016.( In Persian)
[18]  U. Reggiani and G. Grandi, “Quency Behavior of Laminated Iron-Core Inductors for Filter Applications,” IEEE APEC, vol. 2, pp. 654-660, 2000.
[19]  H. Wang and Y. Zhang, “Modeling of Eddy-Current Losses of Welded Laminated Electrical Steels,” IEEE transactions on industrial electronics, vol. 64, no. 4, pp. 40-44, 2017.
[20]  Z. Deng, Y. Kang, J. Zhang, and K. Song, “Multi-Source Effect in Magnetizing-Based Eddy Current Testing Sensor for Surface Crack in Ferromagnetic Materials,” Sensors and Actuators A: Physical, vol. 271, pp. 24-36, 2018.
[21]  N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics,” 2nd Ed., New York: Wiley, pp. 749-750, 1995.