Numerical Modelling for AC Loss of the Second Generation HTS Tapes Under Alternating External Magnetic Fields Using the Finite Element Method ‎

Abstract

Superconductivity  is  one  of  the  most  advanced  technologies  to  use  in  technical  applications  especially  in
electrical  engineering  applications.  This  technology  is  of  great  interest  in  R&D  stage  to  fabricate  electrical
power  arraratus  because  of  promising  features  such  as  higher  efficiency,  lower  loss,  better  reliability,  smaller
size and compact assembly compared with conventional electrical components. The most important properties of
high temperature superconducting  (HTS) tapes  are large current  density, high  power density and  very low  AC
loss. Yttrium-based second generation HTS tapes have got 100 times higher current density and 20 times higher
price  compared  with  conventional  copper  wires.  The  most  important  limitation  on  application  of
superconducting  technology  in  power  applications  is  AC  loss  of  the  HTS  tapes.  Many  methods  have  been
developed during last decay in order to measure, estimate and calculate the AC loss of the HTS wires. One of the
low-cost,  fast,  and  precise  approaches  is  numerical  modelling  methods.  In  this  paper,  a  numerical  model  for
yttrium-based  second  generation  HTS  tapes  has  been  developed  in  order  to  calculate  AC  loss  in  transport
current  mode  and  under  external magnetic  fields  using  the  H-formaulation  finite  element  method.  The
dependency of the current density of tape to magnetic field has been considerd in the model.  

Keywords


[1]     X. Yang, X. Li, Y. He, X. Wang,  and B. Xu, “Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model,” Physica C: Superconductivity and its applications, vol. 535, pp. 1-8, 2017.
[2]     B. G. Marchionini, Y. Yamada, L. Martini, and H. Ohsaki, “High Temperature Superconductivity: A Roadmap for Electric Power Sector Applications, 2015-2030,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-6, 2017.
[3]     S. Fukui, S. Tsukamoto, K. Nohara, J. Ogawa, T. Sato, and T. Nakamura, “Study on AC Loss Reduction in HTS Coil for Armature Winding of AC Rotating Machines,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, 2016.
[4]     X. Obradors and T. Puig, “Coated conductors for power applications: materials challenges,” Superconductor Science and Technology, vol. 27, pp. 1-17, 2014.
[5]     S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, G. Meunier, P. Tixador, Y. Yang, and E. Martinez, “Comparison of numerical methods for modeling of superconductors,” IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 849-852, 2002.
[6]     A. M. Campbell, “A direct method for obtaining the critical state in two and three dimensions,” Superconductor Science and Technology, vol. 22, pp. 1-8, 2009.
[7]     S. Stavrev, F. Grilli, B. Dutoit, and S. P. Ashworth, “Comparison of the AC losses of BSCCO and YBCO conductors by means of numerical analysis,” Superconductor Science and Technology, vol. 18, no. 10, pp. 1300-1312, 2005.
[8]     Y. Ichiki and H. Ohsaki, “Numerical analysis of ac loss characteristics of YBCO coated conductors arranged in parallel,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 2851-2854, 2005.
[9]     V. M. Rodriguez-Zermeno, N. Mijatovic, C. Traholt, T. Zirngibl, E. Seiler, A. B. Abrahamsen, N. F. Pedersen, and M. P. Sorensen, “Towards Faster FEM Simulation of Thin Film Superconductors: A Multiscale Approach,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3273-3276, 2011.
[10]  A. Stenvall, V. Lahtinen, and M. Lyly, “An H-formulation-based three-dimensional hysteresis loss modelling tool in a simulation including time varying applied field and transport current: the fundamental problem and its solution,” Superconductor Science and Technology, vol. 27, no. 10, pp. 1-7, 2014.
[11]  Z. Hong and T. A. Coombs, “Numerical Modelling of AC Loss in Coated Conductors by Finite Element Software Using H Formulation,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1551-1562, 2010.
[12]  M. D. Ainslie, T. J. Flack, Z. Hong, and T. A. Coombs, “Comparison of first- and second-order 2D finite element models for calculating AC loss in high temperature superconductor coated conductors,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30, no. 2, pp. 762-774, 2011.
[13]  G. Escamez, A. Badel, P. Tixador, B. Ramdane, G. Meunier, A. Allais, and C. E. Bruzek, “Numerical Modelling of AC Hysteresis Losses in HTS Tubes,” IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1-5, 2015.
[14]  S. Li, D. X. Chen, Y. Fan, and J. Fang, “Transport ac loss in a rectangular thin strip with power-law E(J) relation,” Physica C: Superconductivity and its applications, vol. 508, pp. 12-16, 2015.
[15]  D. X. Chen, S. Li, and J. Fang, “Scaling law and general expression for transport ac loss of a rectangular thin strip with power-law E(J) relation,” Physica C: Superconductivity and its applications, vol. 519, pp. 89-94, 2015.
[16]  V. M. R. Zermeno, K. Habelok, M. Stepien, and F. Grilli, “A parameter-free method to extract the superconductor’s Jc(B,θ) field-dependence from in-field current–voltage characteristics of high temperature superconductor tapes,” Superconductor Science and Technology, vol. 30, no. 3, pp. 1-7, 2017.
[17]  F. Gomory, M. Vojenciak, E. Pardo, M. Solovyov, and J. Souc, “AC losses in coated conductors,” Superconductor Science and Technology, vol. 23, no. 3, pp. 1-9, 2010.
[18]  F. Grilli, E. Pardo, A. Stenvall, D. N. Nguyen, W. Yuan, and F. Gomory, “Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents,” IEEE Transactions on Applied Superconductivity, vol. 24, no. 1, pp. 1-33, 2014.
[19]  X. Pei, A. C. Smith, M. Barnes, “AC Losses Measurement and Analysis for a 2G YBCO Coil in Metallic Containment Vessels,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, 2017.
[20]  J. H. Kim, C. H. Kim, G. Iyyani, J. Kvitkovic, and S. Pamidi, “Transport AC Loss Measurements in Superconducting Coils,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3962-3972, 2011.
[21]  C. M. Rey, R. C. Duckworth, S. W. Schwenterly, and E. Pleva, “Electrical AC Loss Measurements on a 2G YBCO Coil,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 2424-2427, 2011.
[22]  L. Queval, V. M. R. Zermeno, and F. Grilli, “Numerical models for ac loss calculation in large-scale applications of HTS coated conductors,” Superconductor Science and Technology, vol. 29, no. 2, pp. 1-10, 2016.
[23]  R. Brambilla, F. Grilli, L. Martini, and F. Sirois, “Integral equations for the current density in thin conductors and their solution by the finite-element method,” Superconductor Science and Technology, vol. 21, no. 10, pp. 1-8, 2008.
[24]  D. N. Nguyen, S. P. Ashworth, and J. O. Willis, “Experimental and finite-element method studies of the effects of ferromagnetic substrate on the total ac loss in a rolling-assisted biaxially textured substrate YBa2Cu3O7 tape exposed to a parallel ac magnetic field,” Journal of Applied Physics, vol. 106, no. 9, pp. 1-7, 2009.
[25]  Y. Wang, H. Song, W. Yuan, Z. Jin, and Z. Hong, “Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil,” Journal of Applied Physics, vol. 121, no. 11, pp. 1-16, 2017.
[26]  B. Shen, J. Li, J. Geng, L. Fu, X. Zhang, H. Zhang, C. Li, F. Grilli, and T. A. Coombs, “Investigation of AC losses in horizontally parallel HTS tapes,” Superconductor Science and Technology, vol. 30, no. 7, pp. 1-9, 2017.
 
  • Receive Date: 15 October 2017
  • Revise Date: 25 February 2019
  • Accept Date: 19 September 2018
  • Publish Date: 22 October 2016