Design of a Low-Noise Amplifier MMIC Using the 0.15μm InGaAs pHEMT Technology for Ka-band Application

Document Type : Original Article

Authors

Electrical Engineering Dep., Hakim Sabzevari University

Abstract

In this paper, a Ka band low-noise amplifier realized in 0.15μm InGaAs pHEMT technology for satellite applications is presented.  The proposed three stages amplifier is designed and simulated using the equivalent circuit model and its layout is studied by full-wave electromagnetic simulation. Full-wave simulation results in the frequency range of 32GHz to 37GHz show a maximum noise figure of 1.8 dB and gain of 20.7 dB with 0.4 dB ripple. Also, the input and output return loss is better than 16 dB and output 1dB gain compression point is equal to 13 dBm. The total area occupied by the final design is 1.6 × 1.3 mm 2. All three amplifier stages have source-degenerated configuration and to realize the impedance matching network whilst reducing the size of LNA, transmission line is used instead of inductors. A parallel LC tank circuit in series with a resistor in biasing network is used to improve the stability in a wide frequency range up to 45GHz.

Keywords


   [1]      Z. Yang, T. Yang, and Y. Liu, “A Ka-Band Four-Stage Self-Biased Monolithic Low Noise Amplifier”, J. Infrared, Millimeter and Terahertz Waves, vol. 30, no.5, pp. 417-422, 2009.##
   [2]      Bo Chen, W. Huang, G. Yanng, and Y. Guo, "A Broadband Low Noise Amplifier MMIC in 0.15µm GaAs pHEMT Technology", IEEE Pros. Elec. Power. App., vol. 152, no. 5, 2010.##
   [3]      S. Fujimoto et al., "Ka-band ultra low noise MMIC amplifier using pseudomorphic HEMTs," 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, pp. 17-20 vol.1, 1997.##
   [4]      S. Zandian and A. Bijari, “Low Noise Figure and High Conversion Gain CMOS LNA-Mixer for WLAN Applications”, Journal of Applied Electromagnetics, Vol. 1, No. 2, pp. 19-31, 2018 (In Persian).##
   [5]      Y. Kwon, D. Deakin, E. Sovero, and J. Higgins, “High-Performance Ka-B and Monolithic Low-Noise Amplifiers Using 0.2-pm Dry-R-ecessed GraAs PHEMT’s”, IEEE Microw. and Guided wave Lett., vol. 6, no.. I, July 1996.##
   [6]      E. C. Niehenke., "The evolution of low noise devices and amplifiers," IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, 2012, pp. 1-3.##
   [7]      P. Longhi, L. Pace, S. Colangeli, W. Ciccognani, E. Limiti, "Technologies, Design, and Applications of Low-Noise Amplifiers at Millimetre-Wave: State-of-the-Art and Perspectives" Electronics. Vol. 8 , no. 11, pp. 1222, 2019.##
   [8]      G. Polli, M. Vittori, W. Ciccognani, S. Colangeli, F. Costanzo, A. Salvucci, E. Limiti, “Ka-/V-band self-biased LNAs in 70 nm GaAs/InGaAs Technology”, Radio Frequency Circuits and Systems, PRIME 2018, Prague, Czech Republic.##
   [9]      B. Razavi, RF Microelectronics, 2nd ed., NJ, USA: Prentice-Hall, 2012. ##
[10]      A. Salvucci, P. E. Longhi, S. Colangeli, W. Ciccognani, A. Serino and E. Limiti, "A straightforward design technique for narrowband multi-stage low-noise amplifiers with I/O conjugate match", Int. J. RF Microw. Comput.-Aided Eng., vol. 29, no. 9, Sep. 2019.##
[11]      Q. Wang and Y. Guo, "Ka-Band Self-Biased Monolithic GaAs pHEMT Low Noise Amplifier", IEEE International Conference on Microwave Technology & Computational Electromagnetics, pp. 261-263, May 2011.##
[12]      D. Cuadrado-Calle, D. George and G. Fuller, "A GaAs Ka-band (26–36 GHz) LNA for radio astronomy," IEEE International Microwave and RF Conference (IMaRC), Bangalore, 2014, pp. 301-303.##
[13]      H. Lin et al., "Design of a Ka-band monolithic low noise amplifier," IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, 2015, pp. 171-174 .##
[14]      P. Å. Nilsson et al., "Cryogenic low noise amplifiers in an InP HEMT MMIC process," Asia-Pacific Microwave Conference (APMC), Nanjing, 2015, pp. 1-3.##
[15]      J. Schleeh, N. Wadefalk, P. Nilsson, J. P. Starski and J. Grahn, "Cryogenic Broadband Ultra-Low-Noise MMIC LNAs for Radio Astronomy Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 871-877, Feb. 2013.##
[16]      Y. Tang, N. Wadefalk, M. A. Morgan and S. Weinreb, "Full Ka-band High Performance InP MMIC LNA Module," IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, 2006, pp. 81-84.##
[17]      Advanced Design System (ADS), [online] Available: https://www.keysight.com/en/pc-1375582/advanced- design-system-ads-simulation-elements?cc=IR&lc=eng., 2019.##
[18]      Inder J. Bahl. Fundamentals of RF and Microwave Transistor Amplifiers. 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc; 2009.##
[19]      P. Mahmoudidaryan and A. Medi, "Codesign of Ka-Band Integrated Limiter and Low Noise Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 9, pp. 2843-2852, Sept. 2016.##
[20]      H. Uchida et al., "Ka-band multistage MMIC low-noise amplifier using source inductors with different values for each stage," in IEEE Microwave and Guided Wave Letters, vol. 9, no. 2, pp. 71-72, Feb. 1999.##
[21]      GAO Yuan, ZHANG Bao-jun, ZHANG Bo, “Design of on-chip 15~18 GHz ultra low noise amplifier”, The Journal of China Universities of Posts and Telecommunications, vol. 21, no. 4, pp. 15-18, August 2014.##
[22]      Fatima Salete Correra and Eduardo Amato Tolezani, “Methodology for MMIC Layout Design”, Journal of Microwaves and Optoelectronics, Vol. 6, No. 1, pp. 17-27, June 2007.##
[23]      Ziqiang Yang, Tao Yang, Jun Xie and Ruimin Xu, "The design of a Ka-band two-stage monolithic low noise amplifier," Asia-Pacific Microwave Conference Proceedings, Suzhou, 2005, pp. 3##
[24]      Ziqiang Yang & Tao Yang & Yu Liu, "A Ka-band Four-stage Self-biased Monolithic Low Noise Amplifier", Journal of Infrared Millimeter Terahertz Waves, vol.30, pp. 417-422, Feb. 2009.##