Design, Simulation and Fabrication of a Wideband Microstrip Antenna Using Multilayered Structure and Parasitic Element in Ku-Band

Document Type : Original Article

Authors

1 PhD student, Malek Ashtar University of Technology, Tehran, Iran

2 Assistant Professor, Malek Ashtar University of Technology, Tehran, Iran

3 Assistant Professor, Tarbiat Modares University, Tehran, Iran

4 Malek Ashtar University

Abstract

In this paper, a new design of a wide band rectangular microstrip patch antenna in Ku-band using multilayered dielectric structure is presented for broadband RADAR and satellite applications. In this compact design, a conductor pin is used to excite the radiating patch. The parasitic patch is separated from the radiating one by air gap. The obtained 10-dB impedance bandwidth of the antenna is improved to more than 22%. The variations in the measured gain of the proposed antenna are less than 1 dB in the whole bandwidth. The simulation and fabrication results of the proposed antenna are in a good agreement. 

Keywords


[1]       R. B. Waterhouse, “Design of probe-fed stacked patches,” IEEE Transactions on Antennas and Propagation, vol. 47, pp.1780-1784, 1999.##
[2]       S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of wide-band aperture-stacked patch microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 46, pp. 1245-1251, 1998.##
[3]       J. R. James and P. S. Hall, “Handbook of Microstrip Antennas,” London, Peter Peregrinus Ltd., vol. 1, 1989.##
[4]       P. Mousavi, M. Fakharzadeh, S. H. Jamali, K. Narimani, M. Hossu, H. Bolandhemmat, G. Rafi, and S. Safavi-Naeini, “A low-cost ultra low profile phased array system for mobile satellite reception using zero-knowledge beamforming algorithm,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 3667-3679, 2008.##
[5]       S. I. M. Sheikh, W. Abu-Al-Saud, and A. B. Numan, “Directive stacked patch antenna for UWB applications,” International Journal of Antennas and Propagation, vol. 2013, 2013.##
[6]       R. Jian, Y. Chen, T. Chen, and Z. Li, “Efficient design of compact millimeter wave microstrip linear array with bandwidth enhancement and sidelobe reduction,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, p. e21881, 2019.##
[7]       W. Swelam, A. A. Mitkees, and M. M. Ibrahim, “Wideband planar phased array antenna at Ku frequency-band for synthetic aperture radars and radar-guided missiles tracking and detection,” IEEE Conference on Radar, April 2006.##
[8]       S. Moeini, A. R. Omidvar, and S. H. Mohseni Armaki, “Design and Construction of a Wide Band Antenna with Circular Polarization,” Journal of Applied Electromagnetics, vol. 7, no. 1, pp. 83-88, 2019. (In Persian)##
[9]       J. Khailpour, E. Zarezadeh, and M. Hajebi, “Design and Fabrication of Microstrip Antenna Using Log-Periodic Array for Bandwidth Enhancement with Inset and Proximity Feed,” Journal of Applied Electromagnetics, vol. 4, no. 3, pp. 31-43, 2016. (In Persian)##
[10]    F. Croq and D. M. Pozar, “Millimeter-wave design of   wide-band aperture-coupled stacked microstrip antennas,” IEEE Transactions on antennas and propagation, vol. 39, pp. 1770-1776, 1991.##
[11]    K. Xu, J. Shi, X. Qing, and Z. N. Chen, “A substrate integrated cavity backed filtering slot antenna stacked with a patch for frequency selectivity enhancement,” IEEE Antennas and Wireless Propagation Letters, vol. 17, pp. 1910-1914, 2018.##
[12]    M. A. Belen, “Stacked microstrip patch antenna design for ISM band applications with 3D-printing technology,” Microwave and Optical Technology Letters, vol. 61, pp. 709-712, 2019.##
[13]    A. Kumar, N. Gupta, and P. C. Gautam, “Design Analysis of Broadband Stacked Microstrip Patch Antenna for WLAN Applications,” Wireless Personal Communications, vol. 103, pp. 1499-1515, 2018.##
[14]    Q. Van den Brande, S. Lemey, S. Cuyvers, S. Poelman, L. De Brabander, O. Caytan, L. Bogaert, I.L. De Paula, S. Verstuyft, A. C. Reniers, and B. Smolders, “A Hybrid Integration Strategy for Compact, Broadband, and Highly Efficient Millimeter-Wave On-Chip Antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 18, pp. 2424-2428, 2019.##
[15]    A. Agarwal and A. Kaur, “A dual band stacked aperture coupled antenna array for WLAN applications,” Microwave and Optical Technology Letters, vol. 59, pp. 648-654, 2017.##
[16]    J. Xu, W. Hong, Z. H.  Jiang, and H. Zhang, “Wideband, Low-Profile Patch Array Antenna With Corporate Stacked Microstrip and Substrate Integrated Waveguide Feeding Structure,” IEEE Transactions on Antennas and Propagation, vol. 67, pp. 1368-1373, 2018.##
[17]    P. A. Dzagbletey and Y. B. Jung, “Stacked microstrip linear array for millimeter-wave 5G baseband communication,” IEEE Antennas and Wireless Propagation Letters, vol. 17, pp. 780-783, 2018.##
[18]    M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications,” IEEE Transactions on Antennas and Propagation, vol. 66, pp. 4641-4647, 2018.##
[19]    E. García-Marín, J. L. Masa-Campos, and P. Sánchez-Olivares, “Linearly polarized small patch array fed by corporate SIW network,” Microwave and Optical Technology Letters, vol. 58, pp. 587-593, 2016.##
[20]    B. R. Mahafza, “Radar Systems Analysis and Design Using MATLAB,” Chapman & Hall_CRC, 2000.##
[21]    G. Kumar and K. P. Ray, “Broadband microstrip antennas,” Artech house, 2003.##