[1] S. O. Flyckt, “Photomultiplier tubes: principles and applications,” Photonis, 2002.##
[2] K. K. Hamamatsu, “Photomultiplier tube handbook,” Electron Tube Division, 2006.##
[3] C. Feng, Y. Zhang, J. Liu, Y. Qian, X. Liu, F. Shi, and H. Cheng, “Effect of graded bandgap structure on photoelectric performance of transmission-mode Al x Ga 1-x As/GaAs photocathode modules,” Applied Optics, vol. 56, pp. 9044-9049, 2017.##
[4] K. Matsuoka, “Expression for the angular dependence of the quantum efficiency of a thin multi-alkali photocathode and its optical properties,” Progress of Theoretical and Experimental Physics, vol. 12, p. 123H0, 2018.##
[5] S. Xia, L. Liu, and Y. Kong, “Research on quantum efficiency and photoemission characteristics of negative-electron-affinity GaN nanowire arrays photocathode,” Optical and Quantum Electronics, vol. 48, p. 306, 2016.##
[6] X. Zhangyang, L. Liu, Z. Lv, F. Lu, and J. Tian, “Efficient light trapping in GaN inclined nanorod and nanohole arrays for photocathode applications,” Optical Materials, vol. 101, p. 109747, 2020.##
[7] L. Liu, F. Lu, J. Tian, X. Zhangyang, and Z. Lv, “The effective light harvesting performance of graded compositional AlxGa1− xN nanocone arrays photocathode for ultraviolet detector—A numerical investigation and simulation,” International Journal of Energy Research, vol. 44, pp. 5779-5790, 2020.##
[8] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature materials, vol. 9, pp. 193-204, 2010.##
[9] J. Zhang, L. Zhang, and W Xu, “Surface plasmon polaritons: physics and applications,” Journal of Physics D: Applied Physics, vol. 45, p. 113001, 2012.##
[10] A. Polyakov, K. Thompson, C. Senft, S. Dhuey, B. Harteneck, X. Liang, and H. A. Padmore, “Photocathode performance improvement by plasmonic light trapping in nanostructured metal surfaces,” In Nanophotonic Materials, vol. 8094, p. 809407, 2011. ##
[11] R. C. Word, T. Dornan, and Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Applied Physics Letters, vol. 96, p. 251110, 2010.##
[12] R. K. Li, H. To, G. Andonian, J. Feng, A. Polyakov, C. M. Scoby, and P. Musumeci, “Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode,” Physical review letters, vol. 110, p. 074801, 2013.##
[13] S. Foroutan, H. Z. Dizaji, and A. Riahi, “Plasmon resonance-enhanced photocathode by light trapping in periodic concentric circular nanocavities on gold surface,” Optik, vol. 138, pp. 223-228, 2017.##
[14] Y. Shahamat, A. Ghaffarinejad, and M. Vahedi, “Plasmon induced transparency and refractive index sensing in two nanocavities and double nanodisk resonators,” Optik, vol. 202, p. 163618, 2020.##
[15] Prangsma, “Local and dynamic properties of light interacting with subwavelength holes,” PhD, Twente, Enschede, 2009.##
[16] S. Vassant, et al., “Optical control of THz reflectivity with surface waves,” Terahertz Emitters, Receivers, and Applications II, International Society for Optics and Photonics, vol. 8119, 2011.##
[17] A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics, vol. 11, pp. 941-951, 2016.##
[18] T. Iqbal, S. Khalil, M. Ijaz, K. N. Riaz, M. I. Khan, M. Shakil, and S. Afsheen, “Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap,” Plasmonics, vol. 14, pp. 775-783, 2019.##
[19] K. Eyvazi and M. A. Karami, “Optimizing Plasmonic Color Filter for Imaging Sensor,” Journal of Applied Electromagnetism, vol. 7, pp. 105-112, 2019. (In Persian)##
[20] J. Qiao, X. Li, J. Niu, and Y. Gao, “Quantum Yield of Reflection Mode Varied Doping GaN Photocathode,” In Matec Web of Conferences, EDP Sciences,vol. 67, p. 02019, 2016.##