The Design of a Miniaturized Narrow-Band Absorber Based on Metallic Metamaterial at Terahertz Frequency

Document Type : Original Article

Author

Assistant Professor, Faculty of Electrical Engineering, Sirjan University of Technology, Sirjan, Iran

Abstract

In this article, the design of a miniaturized narrow-band terahertz absorber is theoretically investigated. The designed absorber is made of an artificial dielectric layer (ADL) deposited on a substrate terminated by a metallic layer.  The ADL includes two thin metal layers vertically separated by a thin dielectric film. Each metal layer is patterned to form a lattice of disconnected squares. The lattices on the two metal layers are shifted with respect to each other so that each square on the top lattice partially faces four squares on the bottom lattice. With a proper design of the structure parameters and utilizing the capacitive nature of ADL and the inductive property of the grounded dielectric spacer (the substrate terminated by a metallic layer), a resonant frequency can be achieved at the terahertz regime. In this paper, a simple circuit model is presented for surveying the absorber behavior at normal incidence.  The designed absorber shows perfect absorption around a center frequency of 0.4 THz with a quality factor of Q = 20. The proposed structure is polarization insensitive and shows absorption stability over a wide range of oblique incidence angles. Furthermore, the size of the proposed absorber is very smaller than other metallic absorbers at low terahertz frequency. The thickness of the structure is  and the size of the unit cell is .  Finally, a dual-band absorber can be realized using two layers of ADL.

Keywords


Smiley face

 [1] M. Coulombe, H.  Nguyen and  C. Caloz, “Substrate integrated artificial dielectric structure for miniaturized microstrip circuits,” IEEE Antennas Wirel. Propag . vol. 6,  pp. 575-579, 2007.
[2] I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, “An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF,” IEEE MTT-S Dig , vol. 1, 
pp. 301–304, 2003. 
[3] Y.  Ma,  B. Rejaei, and  Y. Zhuang, “Artificial dielectric shields for integrated transmission lines,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 7, pp. 431-433, 2008. 
[4]  Y. Ma,  B.  Rejaei,  and   Y.  Zhuang, “Low-loss on‌chip transmission lines with micropatterned artificial dielectric shields,” Electron.  Lett‌,  vol. 44, no. 15, pp. 913-914, 2008. 
[5]  K. Takahagi  and  E.  Sano, “High-gain silicon on-chip antenna with artificial dielectric layer,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3624-3629, 2011.
[6]  Sh. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review,” Mater., vol. 11, p. 458, 2018. 
[7] Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He “Plasmonic and metamaterial structures electromagnetic absorbers,” vol. 8,  pp . 495‌-520, 2014. 
[8] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205-213, 2011.
[9] R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements” Adv. Mater, vol. 21, pp. 3504–3509, 2009. 
[10] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its Application as plasmonic sensor” Nano Lett., vol. 10, pp. 2342–2348, 2010. 
[11] D. Wu, R. Li, Y. Liu, Zh. Yu, L. Yu, L. Chen, Ch. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett., vol. 12, p. 427, 2017.
[12] M. Nejat and N. Nozhat, “Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber,” IEEE Sens. J., vol. 19, no. 22, pp. 10490-10497, 2019.
 [13] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett, vol. 104, no. 20, p. 207403, 2010. 
[14] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett., vol. 107, no. 4, p. 045901, 2011.
[15]A. Malakzadeh, F. Khangheshlaghi, and M. Rezayatfam, “A new light and broadband metamaterial absorber with 1.4 mm thickness for reducing the radar cross section of objects,” J. Appl. Electromagn.., vol. 8,  no. 1,  pp. 27-33, 2020. (In Persian) 
[16] M.   Biabanifard   and   M.  S. Abrishamian, “Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons,” AEU   Int. J. Electron. Commun‌, vol. 95,   pp. 256- 263,  2018. 
[17] R. Gao, Z. Xu, Ch. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multi-band and broadband terahertz absorber,” Opt. Commun., vol. 356, pp. 400- 404, 2015.
[18] N. I. Landy, C. M. Bingham, T. Tyler, N.  Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B, vol. 79, no. 12, 2009, Art. no. 125104
[19] X. He, S. Li, X. Yang, S. Shi, F. Wu, and J. Jiang “High-sensitive dualband sensor based on microsize circular ring complementary terahertz metamaterial,” J. Electromagn. Waves   Appl,   vol. 31,  no. 1,  pp. 91-100, 2017. 
[20] B.  X.  Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys, vol. 117, no. 1, p. 014504, 2015.
[21] A. Ebrahimi, R.  T.  Ako, W. S. Lee, M. Bhaskaran, S. Sriram and W. Withayachumnan, “High‌Q terahertz absorber with stable angular response,” IEEE Trans. Terahertz Sci. Technol‌, vol. 10, no. 2, pp. 204-211, 2020. 
[22] J. Yu, T. Lang, and H. Chen, “All-metal terahertz Metamaterial absorber and refractive index sensing performance,”  Photonics‌, vol. 8, p. 164, 2021.
[23] T. Maier  and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett., vol. 34, p. 3012, 2009. 
[24] S.  Barzegar-Parizi   and  A.  Khavasi,  “Designing dual-band absorbers by graphene/metallic metasurfaces,” IEEE J. Quantum Electron., vol. 55, p. 7300108, 2019.
[25] S. Barzegar-Parizi, and A. Ebrahimi, “Ultrathin, polarization-insensitive multi-Band absorbers based on graphene metasurface with THz sensing application,” J. Opt. Soc. Am. B., vol. 37, no. 8, pp. 2372-2381, 2020.
[26] S.  Barzegar-Parizi   and B.  Rejaei,  “Calculation of effective parameters of high permittivity integrated artificial dielectrics,”  IET  Microw. Antennas Propag, vol. 9, no. 12, pp. 1287-1296, 2015.
[27] Y. Ma, “Ferroelectric materials and artificial dielectric layer structures for microwave  integrated circuit technologies,” Ph.D. Thesis‌‌,  Delft University of Technology, 2011.
[28] S. Barzegar-Parizi, A. Ebrahimi, and K. Ghorbani, “Dual-broadband and single ultrawideband absorbers from the terahertz to infrared regime,” J. Opt. Soc. Am. B., vol. 38, pp. 2628-2637, 2021.
[29] O. Luukkonen, C. Simovski, G. Gran‌, G. Goussetis, D.  Lioubtchenko,   A.  V.  Raisanen,     and   S.  A.  Tretyakov., “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1624-1632, 2008.

[30] A. A. Baba,  M. A. B. Zakariya,  Z.  Baharudin, M. Z. u. Rehman, M. F. Ain, and Z. A. Ahmad, “Equivalent lumped-element circuit of aperture and mutually coupled cylindrical dielectric resonator antenna array," Prog. Electromagn. Res. C‌, vol. 45, pp. 15-31, 2013.
[31] C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two dimensional metallic meshes,” Opt. Express, vol. 18, pp. 13309‌13320, 2010. 
 [32] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.,”  Appl. Optics., vol. 24, pp. 4493-4499, 1985.
[33] Kh. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan “Broadband dielectric characterization of aluminum oxide (Al2O3)” J. Micro. and Elect. Pack., vol. 5, pp. 101–106, 2008.
[34] D. Hu, T. Meng, H. Wang, Y. Ma, and  Q. Zhu, “Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application,” Results in Phys., vol. 19, p. 103567, 2020.