Spectroscopic characterization of asphaltene deposition extracted from oil wells at the southwest of Iran using Raman and FT-IR spectroscopy

Document Type : Original Article

Authors

1 Assistant Professor, Faculty of Physics, Science Campus, Yazd University, Yazd, Iran

2 Master's degree, Faculty of Physics, Science Campus, Yazd University, Yazd, Iran

3 Professor, Faculty of Physics, Science Campus, Yazd University, Yazd, Iran

Abstract

Asphaltene is a component of crude oil that creates a variety of problems in the oil industry, including reservoir wettability alteration,, corrosion in the pipelines, and pore plugging. In this paper, asphaltene samples collected from four oil wells in southwest Iran were characterized using Raman spectroscopy to investigate their molecular structures. The recorded spectra were analysed using the integrated intensities of the observed G and D1 modes, utilizing Tunistra and Koenig's proposed model. The analyses result in an estimation of the aromatic sheet diameter (La) of asphaltene samples in the range of 1.3-2.5 nm. The obtained results are consistent with those previously reported for asphaltene samples from other parts of the world. Furthermore, spectroscopic studies of recorded FT-IR spectra of samples allow estimating the structural parameters of asphaltene's Aliphatic, Aromatic, Long-chain, Substitution 1, and Substitution 2 indices with average values of 0.20, 1.36, 0.056, 0.32, and 0.28, respectively.

Keywords


Smiley face

[1]   E. W. Moore, C. W. Crowe, and A. R. Hendrickson, “Formation effect and prevention of asphaltene sludges during stimulation treatments,” J. Pet. Technol., vol. 17, no. 09, pp. 1023-1028, 1965. 
[2]   E. Hong, and P. Watkinson, “A study of asphaltene solubility and precipitation,” Fuel, vol. 83, no. 14-15, pp. 1881-1887, 2004. 
[3]   T. Tavassoli, S. M. Mousavi, S. A. Shojaosadati, and H. Salehizadeh. “Asphaltene biodegradation using microorganisms isolated from oil samples,” Fuel, vol. 93, pp. 142-148, 2012. 
[4]   H, Groenzin, and O. C. Mullins, “Molecular size and structure of asphaltenes from various sources,” Energy & Fuels, vol. 14, no. 3, pp. 677-684, 2000. 
[5]   K. Karan, A. Hammami, M. Flannery, and B. Artur Stankiewicz, “Evaluation of asphaltene instability and a chemical control during production of live oils,” Pet. Sci. Technol, vol. 21, no. 3-4, pp. 629-645, 2003. 
[6]   R. B. De Boer, K. Leerlooyer, M. R. P. Eigner, and A. R. D. Van Bergen, “Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors,” SPE Production & Facilities, vol. 10, no. 01, pp. 55-61, 1995. 
[7]   S. A. Shedid, “An ultrasonic irradiation technique for treatment of asphaltene deposition,” J. Pet. Sci. Eng., vol. 42, no. 1, pp. 57-70, 2004.
[8]   A. E. Pomerantz, M. R. Hammond, A. L. Morrow, O. C. Mullins, and R. N. Zare. “Two-step laser mass spectrometry of asphaltenes.” J. Am. Chem. Soc, vol. 130, no. 23, pp 7216-7217, 2008.
[9]   F. S. AlHumaidan, A. Hauser, M. S. RANA, H. M. Lababidi, and M. Behbehani, “Changes in asphaltene structure during thermal cracking of residual oils: XRD study,” Fuel, vol. 150, pp. 558-564, 2015.
[10]   A. Permanyer, L. Douifi, N. Dupuy, A. Lahcini, and J. Kister, "FTIR and SUVF spectroscopy as an alternative method in reservoir studies. Application to Western Mediterranean oils,” Fuel, vol. 84, no. 2-3, pp. 159-168, 2005. 
[11]   W. A. Abdallah, and Y. Yang, “Raman spectrum of asphaltene,” Energy & fuels, vol. 26, no. 11, pp. 6888-6896, 2012.
[12]   S. I. Andersen, J. Oluf Jensen, and J. G. Speight, “X-ray diffraction of subfractions of petroleum asphaltenes,” Energy & fuels, vol. 19, no. 6, pp. 2371-2377, 2005.
[13]   D. W. Mayo, F. A. Miller, and R. W. Hannah, “Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons”, 2004. 
[14]   W. Abdallah, A. E. Pomerantz, B. Sauerer, O. C. Mullins, and J. Buiting, “Asphaltene chemistry across a large field in Saudi Arabia,” In SPE Middle East Oil & Gas Show and Conference. OnePetro, 2017.
[15]   R. A. Parker, B. C. Gahan, R. M. Graves, B. Samih, X. Zhiyue, and C. B. Reed, “Laser drilling: effects of beam application methods on improving rock removal,” In SPE Annual Technical Conference and Exhibition. OnePetro, 2003.
[16]   B. C. Gahan, R. A. Parker, S. Batarseh, H. Figueroa, C. B. Reed, and Z. Xu, “Laser drilling: determination of energy required to remove rock,” In SPE Annual Technical Conference and Exhibition. OnePetro, 2001.
[17]   F. Tuinstra, and J. Lo Koenig, “Raman spectrum of graphite,” J. Chem. Phys., vol. 53, no. 3, pp. 1126-1130, 1970. 
[18]   R. Rana, S. Nanda, A. Maclennan, Y. Hu, J. A. Kozinski, and A. K. Dalai, “Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water,” J. Energy Chem., vol. 31 pp. 107-118, 2019.
[19]   Y. Bouhadda, D. Bormann, E. Sheu, D. Bendedouch, A. Krallafa, and M. Daaou, “Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction,” Fuel, vol. 86, no. 12-13, pp. 1855-1864, 2007.
[20]   A. Hemmati-Sarapardeh, B. Dabir, M. Ahmadi, A. H. Mohammadi, and M. M. Husein, “Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation.” J. Mol. Liq., vol. 264, pp. 410-424, 2018.
[21]   F.S. AlHumaidan, and M.S .Rana, “Determination of asphaltene structural parameters by Raman spectroscopy” J. Raman. Spectrosc. 52, no. 11, pp.1878-1891,2021.
[22]   R. Izan, M. A. Haddad, A. Behjat, “Crystalline structure characterization of Asphaltene using X-ray diffraction (XRD) analysis”, Proceeding of Annual Physics conference of Iran, University of Tabriz. Tabriz. 26-29 August. 2019. . (In Persian)
[23]   S. Ok, T.K. Mal, “NMR spectroscopy analysis of asphaltenes”, Energy & Fuels. Vol. 33, no. 11, pp. 10391-10414, 2019.
[24]   N.V. Lisitza, D.E. Freed, P.N Sen, Y.Q Song, “Study of asphaltene nanoaggregation by nuclear magnetic resonance (NMR)”, Energy & Fuels, Mar Vol. 23, no. 3, pp. 1189-1193, 2009.
[25]   J.P. Vuković, P. Novak, T. Jednačak, “NMR Spectroscopy as a Tool for Studying Asphaltene Composition”, Croatica Chemica Acta, vol. 92, no. 3, pp. 323-329, 2019
[26]   T, Fergoug and Y. Bouhadda, “Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis”, Fuel, vol. 115, pp.521-526, 2014.
[27]   E. Durand, M. Clemancey, A.A. Quoineaud, J. Verstraete, D. Espinat, J. M. Lancelin, “1H diffusion-ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) as a powerful tool for the analysis of hydrocarbon mixtures and asphaltenes”. Energy & Fuels, vol. 22, no. 4, pp. 2604-2610, 2008.
[28]   M. Nali, V. Calemma, and L. Montanari, “Pyrolysis/gas chromatography/mass spectrometry of asphaltene fractions. Organic mass spectrometry”, vol. 29, no. 11, pp. 607-614, 1994.
[29]   R. Doherty, S. Rezaee, S. Enayat, M. Tavakkoli, and F.M. Vargas, “Crude oil and asphaltene characterization. In Asphaltene Deposition”, CRC Press, pp. 15-72, 2018.
[30]   H. Khalifa, A.A. Ahmed, A. Abusaediyah, A. Yousuf, and S. Grimida, “Gas chromatography-mass spectrometry (gc-ms) in organic geochemical investigation of crude oils from kikinda and velebit fields in Serbia”, International Journal of Research-Granthaalayah, vol. 5, no. 6, pp. 550-560, 2017.
[31] M.Aliannezhadi, F.Shahshahani, V.Ahmadi, “Analysis of Raman QWS-DFB Fiber Laser Considering Nonlinear SPM and XPM Effects”, Scientific Journal of Applied Electromagnetics, vol. 2, no. 4, pp. 43-47, 2016. (In Persian)