Design of V Band 4×4 Butler Matrix in Ridge Gap Waveguide Technology

Document Type : Original Article

Authors

1 Master's degree, Graduate University of Industrial and Advanced Technology, Kerman, Iran

2 Assistant Professor, University of Postgraduate Education and Advanced Navigation, Kerman, Iran

Abstract

This paper presents a Butler matrix in Ridge Gap Waveguide (RGW)technology. For this purpose, we first design the riblet coupler in the millimeter wave band. The riblet coupler is designed with a coupling coefficient of 3 dB and a phase difference of 90 degrees at the outputs. Also, the return loss of all ports of this coupler in the frequency range of 53-60 GHz is better than 10 dB. Then we design a crossover and 45-degree phase shifter in the mentioned frequency range. By integrating four ribelt couplers, two phase shifters and a crossover, the Butler matrix structure is formed. The designed Butler matrix has 4 input and 4 output ports. The simulasion results of the designed matrix obtained by HFSS software show that for excitation of each input port in the frequency range of 53-60 GHz, the power is divided approximately equal between 4 output ports with a ratio of about -6 dB. But there is a linear phase difference between the matrix output ports, which also the phase of output ports change as the excitation port changes to other port. The simulation results are valid due to the desired amplitude and phase distribution at the matrix outputs. Also, comparing the results with those obtained by CST software confirms the proper performance of the designed matrix.
.

Keywords


Smiley face

[1] R. Wu, R. Minami, Y. Tsukui, S. Kawai, Y. Seo, S. Sato, K. Kimura, S. Kondo, T. Ueno, N. Fajri, S. Maki, N. Nagashima, Y. Takeuchi, T. Yamaguchi, A. Musa, K. Kaan Tokgoz, T. Siriburanon, B. Liu, Y. Wang, J. Pang, N. Li, M. Miyahara, K. Okada, and Akira Matsuzawa, “64-QAM 60-GHz CMOS Transceivers for IEEE 802.11ad/ay,” IEEE J. Solid-State Cir., vol. 52, no. 11, pp. 2871-2891, 2017. DOI:10.1109/JSSC.2017.2740264
[2] S. Blandino, G. Mangraviti, C. Desset, A. Bourdoux, P. Wambacq, and S. Pollin, “Multi-User Hybrid MIMO at 60 GHz Using 16-Antenna Transmitters,” IEEE Trans. Cir. Sys. I, vol. 66, iss. 2, pp. 848 – 858, 2019. DOI:10.1109/TCSI.2018.2866933
[7] Y. Ban et al., “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981–2988, 2016. DOI:10.1109/IMWS-AMP.2016.7588434
[8] J. Butler and R. Howe, “Beamforming matrix simplifies design of electronically scanned antennas,” Elec. Design., vol. 9, no. 8, pp. 170–173, 1961.
[9] H. J. Moody, “The systematic design of the Butler matrix,” IEEE Trans. Antennas Propag., vol. 12, no. 6, pp. 786–788, 1964.
[11] T. Djerafi et al., "Planar Ku-Band 4x4 Nolen Matrix in SIW Technology," IEEE Trans. Micro. Theory Techn., vol.58,no.2,pp.259-266,2010. DOI:10.1109/APMC.2008.4958041
[12] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,” IEEE Microw. Wireless Com. Lett., vol. 19, no. 6, pp. 374-376, 2009. https://doi.org/10.1016/j.aeue.2022.154287
[13] D. H. Kim, J. Hirokawa, K. Tekkouk, M. Ando, R. Sauleau, “Comparison between one-body 2-D beam-switching Butler matrix and 2-D beam-switching Rotman lens,” Proceedings of ISAP, 2016.
[14] H. N. Chu, Tzyh-Ghuang Ma, “An Extended 4 × 4 Butler Matrix With Enhanced Beam Controllability and Widened Spatial Coverage,” IEEE Trans. Microw. Theory Tech.,  vol. 66, iss. 3, pp. 1301-1311, 2018. DOI:10.1109/TMTT.2017.2772815
[16] E. T. Der , T. R. Jones, M. Daneshmand, “Miniaturized 4 × 4 Butler Matrix and Tunable Phase Shifter Using Ridged Half-Mode Substrate Integrated Waveguide,” IEEE Trans. Microw. Theory Tech.,  vol. 68, iss. 8, pp. 3379-3388, 2020. DOI:10.1109/TMTT.2020.2989798
[17] Lei-Lei QiuL. ZhuZhao-An OuyangL. Deng, “Wideband Butler Matrix Based on Dual-Layer HMSIW for Enhanced Miniaturization,” IEEE Mic. Wire. Com. Letters , vol. 32, Iss. 1, pp. 25-28, 2022.
[19] T. Tomura, Dong-Hun Kim, M. Wakasa, Y. Sunaguchi, J. Hirokawa, Kentaro Nishimori, “A 20-GHz-band 64×64 Hollow Waveguide Two Dimensional Butler Matrix,” IEEE Access, vol. 7, pp. 164080 – 164088, 2019.
[21] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel ‎metal plates,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 84-87, 2009.‎ DOI:10.1109/LAWP.2008.2011147
[22] P.-S. Kildal, “Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves,” in Proc. EuCAP, Mar. 2009.
[23] E. Rajo, P-S. Kildal, “Numerical Studies of Bandwidth of Parallel Plate Cut-Off Realized by a Bed of Nails, Corrugations and Mushroom-Type Electromagnetic Bandgap for Use in Gap Waveguides,” IET Microw. Antennas Propag., vol. 5, no. 3, pp. 282-289, 2011. DOI:10.1049/iet-map.2010.0073
[24] M. S. Dehghani, D. Zarifi, “Design of Power Divider Based on Gap Waveguide Technology for Use in Low Sidelobe Level 60-GHz Slot Array Antenna,” J. Appl. Electromagnetics, vol. 7, no.2, pp. 97-104, 2020. (In Persian). DOR:20.1001.1.26455153.1398.7.2.11.6
[25] A. U. Zaman, A. A. Glazunov, “Millimeter Wave Wideband High Gain Antenna Based on Gap Waveguide Technology,” Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 2017.
[26] Adrián Tamayo-Domínguez, José-Manuel Fernández-González and Manuel Sierra-Castañer, “3-D-Printed Modified Butler Matrix Based on Gap Waveguide at W-Band for Monopulse Radar,” IEEE Trans. Microw. Theory Tech., vol. 68, iss. 3, pp. 926-938, 2019. DOI:10.1109/TMTT.2019.2953164
[27] Chao-Hsiung Tseng, Chih-Jung Chen and Tah-Hsiung Chu, “A Low-Cost 60-GHz Switched-Beam Patch Antenna Array With Butler Matrix Network,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 432-435, 2008. DOI:10.1109/LAWP.2008.2001849
[28] K. Tekkouk, J. Hirokawa, R. Sauleau, M. Ettorre, M. Sano, M. Ando, “Dual-layer Ridged Waveguide Slot Array fed by a Butler Matrix with Sidelobe Control in the 60 GHz Band, IEEE Transactions on Antennas and Propagation, vol. 63, Iss. 9, pp. 3857 – 3867, 2015. DOI:10.1109/TAP.2015.2442612
[29] P. Chen, W. Hong, Z. Kuai, J. Xu, H. Wang, J. Chen, H. Tang, J. Zhou, and K. Wu “A Multibeam Antenna Based on Substrate Integrated Waveguide Technology for MIMO Wireless Communications, IEEE Trans. Antennas Propag., vol. 57, no. 6, pp.1813-1821, 2009. DOI:10.1109/TAP.2009.2019868
[30] F. Gross, “Smart Antenna for Wireless Communication,” McGraw-Hill, NY, USA, 2005.
[31] H. J. Riblet, “The Short-Slot Hybrid Junction,” Proceedings of IRE, vol. 40, pp. 180-184, 1952.