Design of self-activating light intensity filter based on thermoplasmics and liquid crystals and simulation of thermal effects caused by localized surface plasmons of different metals
1
Assistant Professor of Imam Hossein University, Tehran, Iran
2
Assistant Professor ,University of Tehran, Tehran, Iran
Abstract
Light intensity filters are a new class of optical filters that are needed with the increasing use of lasers in various fields, including medicine and industry. The mechanism of these filters is such that if the light intensity increases beyond a permissible threshold, it is activated and prevents the passage of intense light, which cause casualties in devices and humans. In this report, a new type of these filters is designed based on the heat generated by plasmonic absorption of metal nanoparticles and the use of this heat to disrupt the order of liquid crystal molecules. In addition, the absorption spectra of different metal nanoparticles have been simulated to achieve the appropriate material at each wavelength. Also, the increase in temperature induced in the substrate due to the absorption of nanoparticles is simulated and based on the existing equations, it is ensured that this temperatureincrease can lead to the rotation of liquid crystal molecules and thus filter the intense incoming light. .
Peng, Y.-H. Lee, Z. Luo, and S.-T. Wu, "Low voltage blue phase liquid crystal for spatial light modulators," Opt. lett, vol. 40, no. 21, pp. 5097-5100,2015, https://doi.org/10.1364/OL.40.005097
Peng, D. Xu, H. Chen, and S.-T. Wu, "Low voltage polymer network liquid crystal for infrared spatial light modulators," Opt. Express, vol. 23, no. 3, pp. 2361-2368, 2015. https://doi.org/10.1364/OE.23.002361
Popov, E. K. Mann, and A. Jákli, "Thermotropic liquid crystal films for biosensors and beyond," J. Mat. Chem. B, vol. 5, no. 26, pp. 5061-5078, 2017. https://doi.org/10.1039/C7TB00809K
Khoo, J.-H. Park, and J. Liou, "All-optical switching of continuous wave, microsecond lasers with a dye-doped nematic liquid crystal," App. phys. lett, vol. 90, no. 15, p. 151107, 2007. https://doi.org/10.1063/1.2721361
Khoo, J. Liou, and M. Stinger, "Microseconds–nanoseconds all-optical switching of visible-near infrared (0.5 µm–1.55 µm) lasers with dye-doped nematic liquid crystals," Mol. Cryst. Liq. Cryst, vol. 527, no. 1, pp. 109/[265]-118/[274], 2010. https://doi.org/10.1080/15421406.2010.486708
Khoo, J. Liou, M. Stinger, and S. Zhao, "Ultrafast all-optical switching with transparent and absorptive nematic liquid crystals–Implications in tunable metamaterials," Mol. Cryst. Liq. Cryst, vol. 543, no. 1, pp. 151/[917]-159/[925], 2011. https://doi.org/10.1080/15421406.2011.569456
Hege, O. Muller, and L. Merlat, "Laser protection with optical limiting by combination of polymers with dyes," J. Appl. Polym. Sci, vol. 136, no. 10, p. 47150,2019. https://doi.org/10.1002/app.47150
M. Sullivan, Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013.
Mehrzad, F. Habibimoghaddam, E. Mohajerani, and M. Mohammadimasoudi, "Accurate quantification of photothermal heat originating from a plasmonic metasurface," Opt. Lett, vol. 45, no. 8, pp. 2355-2358, 2020. https://doi.org/10.1364/OL.387789
Axelevitch, B. Apter, and G. Golan, "Simulation and experimental investigation of optical transparency in gold island films," Opt. express, vol. 21, no. 4, pp. 4126-4138, 2013. https://doi.org/10.1364/OE.21.004126
O. Sh. Motevasel, M. Seifouri, "Investigation and Numerical Analysis of the Effect of Size, Distance, Position, and Composition of Plasmonic Nanostructures on the Absorption of Perovskite Solar Cells," J. Appl. Electromagn, vol. 8, no. 23, 2020. DOR: 20.1001.1.26455153.1399.8.2.6.8.
Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, "Ultrathin gold island films on silanized glass. Morphology and optical properties," Chem. Mater, vol. 16, no. 18, pp. 3476-3483, 2004. https://doi.org/10.1021/cm049605a
Jirón and E. Castellón, "The experimental average refractive index of liquid crystals and its prediction from the anisotropic indices," PCCP, vol. 24, no. 13, pp. 7788-7796, 2022 https://doi.org/10.1039/D1CP04065K.
Langhammer, M. Schwind, B. Kasemo, and I. Zoric, "Localized surface plasmon resonances in aluminum nanodisks," Nano lett, vol. 8, no. 5, pp. 1461-1471, 2008 https://doi.org/10.1021/nl080453i.
S. Noh, E. H. Cho, H. M. Kim, Y. D. Han, and J. Joo, "Organic solar cells using plasmonics of Ag nanoprisms," Org. Electron, vol. 14, no. 1, pp. 278-285, 2013 https://doi.org/10.1016/j.orgel.2012.10.040 .
Rahimian, H., & Mohammadimasoudi, M. (2023). Design of self-activating light intensity filter based on thermoplasmics and liquid crystals and simulation of thermal effects caused by localized surface plasmons of different metals. Applied Electromagnetics, 11(2), 79-87.
MLA
Hadi Rahimian; Mohammad Mohammadimasoudi. "Design of self-activating light intensity filter based on thermoplasmics and liquid crystals and simulation of thermal effects caused by localized surface plasmons of different metals", Applied Electromagnetics, 11, 2, 2023, 79-87.
HARVARD
Rahimian, H., Mohammadimasoudi, M. (2023). 'Design of self-activating light intensity filter based on thermoplasmics and liquid crystals and simulation of thermal effects caused by localized surface plasmons of different metals', Applied Electromagnetics, 11(2), pp. 79-87.
VANCOUVER
Rahimian, H., Mohammadimasoudi, M. Design of self-activating light intensity filter based on thermoplasmics and liquid crystals and simulation of thermal effects caused by localized surface plasmons of different metals. Applied Electromagnetics, 2023; 11(2): 79-87.