Design and Simulation of Ka to W band Klystron Harmonic Generator using Core Oscillation Method (COM)

Document Type : Original Article

Authors

1 PhD student, Malek Ashtar University of Technology, Tehran, Iran

2 Assistant Professor, Malek Ashtar University of Technology, Tehran, Iran

3 Associate Professor, Malek Ashtar University of Technology, Tehran, Iran

Abstract

In this article, a harmonic generator based on klystron is presented, whose input signal is in Ka band and its amplified output signal is in W band. Harmonic generator design is based on Ka-band klystron, which reduces the electron beam current density in the interaction region, reduces the cathode density in the electron gun, and reduces the DC magnetic field required for electron beam convergence. Reducing the mentioned parameters reduces the challenges and complications related to the construction and increases the possibility of achieving high powers in the W band. One of the challenges of harmonic generators is their low efficiency, which has been tried to increase the electron efficiency by using the core oscillation method, which is one of the new methods for increasing the efficiency of klystron amplifiers. The designed harmonic generator structure consists of four Ka band cavity and one W band cavities. The design is done using AJDisk software and a indigenous code. The designed structure is simulated using the PIC studio of CST software. RF output power in W band (93.9 GHz frequency) is 6.4 kW with 16% efficiency. The input frequency is in the Ka band (31.3 GHz frequency). The gain of this device, which is equivalent to the ratio of output power to input power, is 53.9 dB. Extended interaction cavities have been used to reduce the voltage on the gap of the output cavity that prevents the RF breakdown

Keywords


Smiley face

 
[1]           F. Toufexis, S. G. Tantawi, A. Jensen, V. A. Dolgashev, A. Haase, M. V. Fazio, and P. Borchard, "Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube," Applied Physics Letters vol. 110, 2017.doi:10.1063/1.4990970.
[2]           B. Steer, A. Roitman, P. Horoyski, M. Hyttinen, R. Dobbs, and D. Berry, "Advantages of Extended Interaction Klystron technology at millimeter and sub-millimeter frequencies," 2007. doi:10.1109/PPPS.2007.4652369.
[3]           F. Yang, J. Li, H.-X. Yu, H.-F. Zhao, Y. Zhao, X.-M. Chen, A.-X. Zhang, and Z.-H. Jin, "W band solid-state power amplifier for aerospace usage," The Journal of Engineering, vol. 2022, no. 2, pp. 210-215, 2022.doi:https://doi.org/10.1049/tje2.12102.
 [4]          J. Schellenberg, E. Watkins, M. Micovic, B. Kim, and K. Han, "W-band, 5W solid-state power amplifier/combiner," The Journal of Engineering, pp. 240-243, 2010.doi:10.1109/MWSYM.2010.5517616.
 [5]          R. Barker, N. Luhmann, J. Booske, and G. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics. 2005.
 [6]          C. Paoloni, D. Gamzina, R. Letizia, Y. Zheng, and N. C. Luhmann, "Millimeter wave traveling wave tubes for the 21st Century," Journal of Electromagnetic Waves and Applications, vol. 35, no. 5, pp. 567-603, 2021.doi:10.1080/09205071.2020.1848643.
 [7]          J. Fan and Y. Wang, "A 14 kW High-Power X-Band to Ka-Band Klystron Frequency Multiplier," IEEE Transactions on Electron Devices, vol. 61, no. 6, pp. 1854-1858, 2014.doi:10.1109/TED.2013.2295001.
 [8]          J. Fan, Y. Zhang, and Y. Wang, "A 30-kW High-Power X-band to Ku-band Klystron Frequency Multiplier," IEEE Transactions on Electron Devices, vol. 60, pp. 1457-1462, 2013.doi:10.1109/TED.2013.2238677.
 [9]          W. H. Cornetet, "A self-excited drift-tube klystron frequency multiplier for use in generating millimeter waves," IRE Transactions on Electron Devices, vol. 6, no. 2, pp. 236-241, 1959.doi:10.1109/T-ED.1959.14476.
 [10]        G. Burt, L. Zhang, D. A. Constable, H. Yin, C. J. Lingwood, W. He, C. Paoloni, and A. W. Cross, "A Millimeter-Wave Klystron Upconverter With a Higher Order Mode Output Cavity," IEEE Transactions on Electron Devices, vol. 64, no. 9, pp. 3857-3862, 2017.doi:10.1109/TED.2017.2724581.
[11]         M. Behtouei, B. Spataro, F. Di Paolo, and A. Leggieri, "The Ka-band high power klystron amplifier design program of INFN," Vacuum, vol. 191, p. 110377, 2021.doi:https://doi.org/10.1016/j.vacuum.2021.110377.
[12]         J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, "Vacuum Electronic High Power Terahertz Sources," IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 54-75, 2011.doi:10.1109/TTHZ.2011.2151610.
 [13]        T. G. Mihran, "The effect of space charge on bunching in a two-cavity klystron," IRE Transactions on Electron Devices, vol. 6, no. 1, pp. 54-64, 1959.doi:10.1109/T-ED.1959.14450.
[14]         T. Shintake, "Klystron simulation and design using the Field Charge Interaction (FCI) code," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 363, no. 1, pp. 83-89, 1995.doi:https://doi.org/10.1016/0168-9002(95)00256-1.
 [15]        A. S. Gilmour, Microwave and Millimeter-Wave Vacuum Electron Devices: Inductive Output Tubes, Klystrons, Traveling-Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons. Artech, 2020.
[16]  A. Jensen, M. Fazio, J. Neilson, and G. Scheitrum, "Developing Sheet Beam Klystron Simulation Capability in AJDISK," IEEE Transactions on Electron Devices, vol. 61, no. 6, pp. 1666-1671, 2014.doi:10.1109/TED.2014.2298753.
 [17]    D. Constable, A. Baikov, G. Burt, I. Guzilov, V. [1], A. Jensen, R. Kowalczyk, C. Lingwood, R. Marchesin, C. Marrelli, and I. Syratchev, "High Efficiency Klystron Development for Particle Accelerators," presented at the Advanced Beam Dynamics Workshop on High Luminosity Circular e+e-Colliders, Daresbury, United Kingdom, 2017. doi:10.18429/JACoW-eeFACT2016-WET3AH2.
[18] A. Jensen, A. Haase, E. Jongewaard, M. Kemp, and J. Neilson, "Increasing klystron efficiency using COM and BAC tuning and application to the 5045 klystron," in 2016 IEEE International Vacuum Electronics Conference (IVEC), 2016, pp. 1-2. doi:10.1109/IVEC.2016.7561811.
Volume 12, Issue 1 - Serial Number 28
Spring and Summer
September 2024
Pages 87-96
  • Receive Date: 08 March 2024
  • Revise Date: 07 June 2024
  • Accept Date: 28 June 2024
  • Publish Date: 24 July 2024