Computational Efficiency Improvement of Frequency Post-Processing In Ultra-Wideband Propagation Modeling Using Polynomial Interpolation Functions

Abstract

One  of  the major  challenges  in  site-specific  indoor  propagation  modeling  of  ultra-wideband  electro-magnetic
waves  is  the  intensive  computational  cost  of  the  problem.  In  fact,  the  large  bandwidth  in  ultra-wideband
propagation modeling in the problem causes considerable frequency dependence in the propagation mechanisms
and  antenna  patterns  that  should  be  properly  considered.  The  polynomial  interpolation  functions  have  been
incorporated  in  the  ray  tracing  to  increase  computational  efficiency.  Thus,  field  calculations  need  to  be
performed  at  a  few  frequency  samples.  Using  appropriate  interpolation  functions  reduces  the  computational
burden  of  the  post-processing  stage,  without  decreasing  the  accuracy  of  results.  Therefore,  as  shown  in  the
numerical results by using the presented method in this study, the simulation time is reduced several times than
the reference method.

Keywords


[1]     S. K. Yong and C.-C. Chong, "An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges," EURASIP Journal on Wireless Communications and Networking, no. 1(2006), pp.078907, 2007.##
[2]     M. Boozari and A. Shishegar, "Indoor ultrawideband propagation modelling using Chebyshev interpolation in 60 GHz band based on ray tracing technique."  in Millimeter-Wave and Terahertz Technologies (MMWATT), 2014 third conference on, pp. 1-4, 2014.##                    
[3]     G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, "A statistical model of urban multipath propagation," Vehicular Technology, IEEE Transactions on, vol. 21, pp. 1-9, 1972.##
[4]     H. Xu, V. Kukshya, and T. S. Rappaport, "Spatial and temporal characteristics of 60-GHz indoor channels," Selected Areas in Communications, IEEE Journal on, vol. 20, pp. 620-630, 2002.##
[5]     S. Y. Seidel and T. S. Rappaport, "Site-specific propagation prediction for wireless in-building personal communication system design," Vehicular Technology, IEEE Transactions on, vol. 43, pp. 879-891, 1994.##
[6]     S.-H. Chen and S.-K. Jeng, "An SBR/image approach for radio wave propagation in indoor environments with metallic furniture," Antennas and Propagation, IEEE Transactions on, vol. 45, pp. 98-106, 1997.##
[7]     E. J. Rothwell, "Efficient computation of the time-domain TM plane-wave reflection coefficient," IEEE transactions on antennas and propagation, vol. 53, pp. 3417-3419, 2005.##
[8]     F. Saez de Adana, O. Gutiérrez, M. Navarro, and A. Mohan, "Efficient time-domain ray-tracing technique for the analysis of ultra-wideband indoor environments including lossy materials and multiple effects," International Journal of Antennas and Propagation, vol. 2009, 2010.##
[9]     R. Hoppe, P. Wertz, G. Wolfle, and F. M. Landstorfer, "Wideband propagation modelling for indoor environments and for radio transmission into buildings," in Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on, pp. 282-286, 2000.##
[10]  G. G. Raju, Dielectrics in electric fields vol. 19: CRC press, 2003.##
[11]  G. Tiberi, S. Bertini, W. Q. Malik, A. Monorchio, D. J. Edwards, and G. Manara, "Analysis of Realistic Ultrawideband Indoor Communication Channels by Using an Efficient Ray-Tracing Based Method,"  Antennas and Propagation, IEEE Transactions on, vol. 57, pp. 777-785, 2009.##
[12]  G. Tiberi, S. Bertini, A. Monorchio, F. Giannetti, and G. Manara, "Computationally efficient ray-tracing technique for modelling ultrawideband indoor propagation channels," Microwaves, Antennas & Propagation, IET, vol. 3, pp. 395-401, 2009.##
[13]  V. Mohtashami and A. Shishegar, "Efficient ultrawideband propagation modelling by using the cubic B-spline function in ray tracing calculations," IET microwaves, antennas & propagation, vol. 6, pp. 1347-1358, 2012.##
[14]  Å. Björck and G. Dahlquist, Numerical methods in scientific computing: Society for Industrial and Applied Mathematics, 2008.##
[15]  C. A. Balanis, Advanced engineering electromagnetics vol. 20: Wiley New York, 1989.##
[16]  A. Muqaibel, A. Safaai-Jazi, A. Bayram, A. Attiya, and S. Riad, "Ultrawideband through-the-wall propagation," IEE Proceedings-Microwaves, Antennas and Propagation, vol. 152, pp. 581-588, 2005.##
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Volume 3, Issue 4 - Serial Number 4
January 2016
Pages 29-38
  • Receive Date: 05 February 2017
  • Revise Date: 06 March 2019
  • Accept Date: 19 September 2018
  • Publish Date: 21 January 2016