بهینه‌سازی چند هدفه موتورهای با آهنربای سطحی با روشهای طراحی هندسه آهنربا روتور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه صنعتی مالک اشتر تهران

2 کارشناسی ارشد دانشگاه صنعتی مالک اشتر تهران

چکیده

در این مقاله یک مدل تحلیلی برای پیشبینی گشتاور دندانه و چگالی شار با در نظر گرفتن اثر شیار استاتور در ماشین‌های با آهنربای سطحی ارایه شده است. از رابطه تنسور تنش ماکسول برای محاسبه گشتاور دندانه در فاصله هوایی استفاده میشود. الگو مغناطیسشوندگی آهنربا شعاعی و موازی در نظر گرفته شده است و نتایج بهدست آمده از مدل تحلیلی با روش المان محدود تایید میشود. با استفاده از مدل تحلیلی فراهم شده اقدام به بهینه‌سازی همزمان گشتاور دندانه و نسبت مولفه مکانی اصلی به مولفههای مکانی مرتبه بالاتر چگالی شار فاصله هوایی مینماییم. گشتاور دندانه و مولفههای مکانی چگالی شار بسیار به هندسه آهنربا حساس میباشند، بنابراین با بهینه کردن هندسه آهنربا میتوان عملکرد ماشین را بهبود بخشید.  از روشهای طراحی هندسه آهنربا استفاده شده بهینه سازی طول کمان آهنربا، جابجایی قطب آهنربا و استفاده از آهنربا با مغناطیس شوندگی متفاوت میباشد. از آن جهت که دو متغیر ذکر شده در تابع هدف از یک جنس نمی‌باشند، از مقادیر نرمالیزه شده متغیرها در تابع هدف استفاده شده است، برای بهینه سازی پارامترهای روتور از الگوریتم جستجو مستقیم استفاده میشود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Pole-Shaping in Surface-Mounted PM Machines using Analytical Modeling: Cogging Torque and Flux Density Harmonics

چکیده [English]

An analytical model for prediction of air gap flux density and cogging torque in slotted Surface PM (SPM) ma-
chines have been presented. Cogging torque has been calculated by integrating the Maxwell stress tensor inside the
air gap. Two different magnetization patterns (radial and para llel) have been considered and their results have been
compared with each other.  The obtained model has been verified with Finite Element Analysis (FEA). Using the pro-
posed model, the cogging torque and low-order harmonics of the magnetic flux density have been optimized. The cog-
ging torque and air-gap flux density THD are very sensitive to the pole-shaping, thus changing the pole-shaping opti-
mization can be obtained. Three methods (optimal pole-arc , magnet pole-shifting and mixed materials) have been used
to design pole-shaping in SPM machines. A weighted normalizing method has been applied with direct search method
to find the optimum solution. Finally, the validity of the proposed model and the obtained results has been verified
with FEA .

کلیدواژه‌ها [English]

  • analytical model
  • surface-mounted PM motors
  • parallel and radial magnetization
  • cogging torque
  • flux density harmonics
[1]  L. Zhu, S. Z. Jiang, and Z. Q. Zhu, “Analytical  method
for  minimizing  cogging  torque  in  permanent  magnet
machines,”  IEEE  Trans.  on  Magn.,  vol.  45,  no.  4,  pp.
2020-2031, 2009. ##
[2]  T.  M.  Jahns  and  W.  L.  Soong,  “Pulsating  torque
minimization  techniques  for  permanent  magnet  AC
motor  drives-a  review,”  IEEE  Trans.  on  Indus.
Electronics, vol. 43, no. 2, pp. 321-330, 1996. ##
[3]  D.  C.  Hanselman,  “Effect  of  skew,  pole  count  and  slot
count  on  brushless  motor  radial  force,  cogging  torque
and  back  EMF,”  Elect.  Eng.  Proc.  Elect.  Power  Appl.
vol. 44, no. 5, pp. 325-330, 1997. ##
[4]  M.  S.  Islam  and  T.  Sebastian,  “Issues  in  reducing  the
cogging  torque  on  mass  produced  permanent  magnet
brushless dc motor,” IEEE Trans. On Magn., vol. 43, no.
9, pp. 813-820, 2007. ##
[5]  Z. Q. Zhu and D. Howe, “Influence of design parameters
on  cogging  torque  in  permanent  magnet  machines,”
IEEE  Trans.  on  Energy  Convers,  vol.  15,  no.  4,  pp.
407-412, 2000. ##
[6]  Mini Dai, A. Keyhani, and T. Sebastian, “Torque ripple
analysis of a pm brushless dc motor using finite element
method,”  IEEE  Trans.  on  Energy  Convers.,  vol.  19,
no.1, pp. 40-45, 2004.  ##
[7]  N.  Bianchi  and  S.  Bolognani,  “Design  techniques  for
reducing  the  cogging  torque  in  surface  mounted  PM
motors,”  IEEE  Trans.  on  Ind.  Applicat.,  vol.  38,  no.5,
pp. 1259-1265, 2002. ##
[8]  S.  M.  Hwang  and  J.  B.  Eom,  etc,  “various  design
techniques  to  reduce  cogging  torque  by  controlling
energy  variation  in  permanent  magnet  motors,”  IEEE
Trans. on Magn., vol. 37, no. 4, pp. 2806-2909, 2001. ##
[9]  S.  M.  Hwang  and  J.  B.  Eom,  “Cogging  torque  and
acoustic noise reduction in permanent magnet motors by
teeth pairing,” IEEE Trans. on Magn., vol. 36, no. 5, pp.
3144-3146, 2000. ##
[10]  Y.  Lin,  Y.  Hu,  and  T.  Lin,  “A  method  to  reduce  the
cogging  torque  of  spindle  motors,”  Journal  of  
Magnetism  and  Magnetic  Materials,  vol.  209,  no.  1-3,
pp. 180-182, 2000. ##
[11]  N.  Bianchi  and  S.  Bolognani,  “Torque  Harmonic  
Compensation  in  a  Synchronous  Reluctance  Motor,”
IEEE  Trans.  on  Energy  Conv.,  vol.  23,  no.  2,  pp.
466-473, 2008. ##
[12]  D. Wang, X. Wang, and etc, “Optimization of Magnetic
Pole Shifting to Reduce Cogging Torque in Solid-Rotor
Permanent-Magnet  Synchronous  Motors,”  IEEE  Trans.
on Magn., vol. 46, no. 5, pp. 1228-1234, 2010. ##
[13]  A.  H.  Isfahani,  S.  Vaez-Zadeh,  and  M.  A.  Rahman,
“Using  modular  poles  for  shape  optimization  of  flux
density  distribution  in  permanent  magnet  machines,”
IEEE Trans. Magn, vol. 44, no. 8, pp. 2009-2015, 2008. ##
[14]  L.  Wu  and  Z.  Q.  Zhu,  “Analytical  Modeling  of         
Surface-Mounted PM Machines Accounting for Magnet
Shaping  and  Varied  Magnet  Property,”  IEEE  Trans.
Magn., vol.  50, no. 7, 2014. ##
[15]  Z. Azar and Z. Q.  Zhu,  “ Influence of Electric  Loading
and  Magnetic  Saturation  on  Cogging  Torque,  Back-EMF and Torque Ripple of PM Machines,” IEEE Trans.
on Magn., vol. 48, no. 10, pp. 2650-2958, 2012. ##
[16]   S. T.  Boroujeni  and  V.  Zamani,  “A  Novel  Analytical
Model  for  No-Load,  Slotted,  Surface-Mounted  PM  
Machines:  Air  gap  Flux  Density  and  Cogging  Torque,”
IEEE. Trans. on Magn., vol. 51, no. 4, 2015. ##
[17]  D.  K.  Cheng,  “Field  and  Wave  Electromagnetics,”     
Addison Wesley Publishing Company, 1983. ##
[18]  A.  Varahram,  J.  R.  Mohassel,  and  K.  Mafinezhad,
“Optimization  of  Array  Factor  in  Linear  Arrays  using
Modified  Genetic  Algorithm,”  International  Journal  of
Engineering,  Trans.  B,  vol.  174,  no.  6,  pp.  367-380,
2004.##