آنالیز لیزر فیبر رامان QWS-DFB با در نظر گرفتن اثرات غیرخطی SPM و XPM

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

در این مقاله لیزر فیبر رامان با فیدبک توزیع­شده و انتقال فاز  p/2در شرایط بالای آستانه به‌صورت نظری تحلیل شده ­است. اثرات خود مدولاسیون فازی و مدولاسیون فاز متقاطع روی عملکرد لیزر در نظر گرفته شده­ است. نتایج عددی نشان می­دهد که اثرات غیرخطی خود مدولاسیون فازی و مدولاسیون فاز متقاطع، سبب تقویت توان خروجی لیزر می­شود. تغییرات طول‌موج خروجی لیزر با تغییر توان موج دمش نیز در شرایط بالای آستانه ارزیابی ‌شده است. نتیجه محاسبات نشان می­دهد که در غیاب اثرات غیرخطی، طول‌موج با تغییر توان موج دمش تغییر    نمی­کند، اما با افزایش توان دمش و با درنظرگرفتن اثرات غیرخطی، انتقال به قرمزی در حدود 05/0 نانومتر در طول‌موج نوسانی لیزر مشاهده   می­شود. شبیه­سازی با استفاده از روش ماتریس انتقال و حل سه معادله موج جفت­شده غیرخطی که انتشار موج دمش، موج استوکس پیشرو و موج استوکس پسرو را در طول فیبر بیان می­کنند انجام ‌شده است. ماتریس انتقال به­کار رفته برای ساختار لیزر فیبر رامان با فیدبک توزیع­شده برای  اولین بار در این مقاله معرفی ‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Raman QWS-DFB Fiber Laser Considering Nonlinear SPM and XPM Effects

چکیده [English]

In  this  paper,  a /2-phase  shifted  distributed  feedback  Raman  fiber  (DFB-RF)  laser  above  threshold  condition  is
analyzed  theoretically.  The  cross  phase  modulation  (XPM)  and  self  phase  modulation  (SPM)  nonlinear  effects  are
considered in the presented model. Numerical results show that the XPM and SPM increase the output power of DFB-
Raman fiber laser. Variation of wavelength of structure for  different values of pump power has been evaluated in  the
presence  and  absence  of  nonlinear  effects. It  is  found  that  in  the  absence  of  nonlinear  effects  wavelength  of  laser  is
constant.  However,  in  the  presence  of  nonlinear  effects  a  red  shift  about  5×10-2nm  with  increasing  pump  power  is
observed.  Simulation  is  performed  by  using  transfer  matrix  method  to  solve  three  coupled  nonlinear  wave  equations
which  describe  the  propagation  of  pump,  forward  and  backward  Stokes  waves.  The  transfer  matrix  used  for  DFB
Raman fiber laser, is introduced for the first time in this paper.  
 

کلیدواژه‌ها [English]

  • Distributed Feedback Laser
  • Raman Fiber Laser
  • Self-Phase Modulation
  • Cross Phase Modulation
[1]  C. W. Freudiger, W. Yang, G. R. Holtom, N.
Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated
Raman scattering microscopy with a robust fibre laser
source” Nat. Photonics, vol. 8, pp. 153–159, 2014. ##
[2]  P. S. Westbrook, K. S. Abedin, J. W. Nicholson, T.
Kremp, and J. Porque, “Raman fiber distributed feedback
lasers” Opt. Lett., vol. 36, pp. 2895-2897, 2011. ##
[3]  J. Shi, Sh. ul- Alam, and M. Ibsen, “Highly efficient
Raman distributed feedback fibre lasers,” Opt. Express,  ##
[4]  T.  Kremp,  K.  S.  Abedin,  and  P.  S.  Westbrook,           
“Closed-form approximations to the threshold quantities
of distributed-feedback lasers with varying phase shifts
and  positions,”  IEEE  J.  Quant.  Elect.,  vol.  49,  no.  3,  pp.         
281-292, 2013. ##
[5]  M. Aliannezhadi, F.Shahshahani, and V. ahmadi,
“Analysis of Single Mode Operation and Fiber Length
Dependence of Threshold Pump Power of QWS-DFB-RF
Laser,” Electrical Engineering, vol. 44, no. 2, pp 35 -42,
2014. (in Persian) ##
[6]  M. Aliannezhadi and F. Shahshahani, “Analysis of Raman
DFB fiber laser with Reflecting Facets at Threshold
Condition,”  1st   Iranian Conference of Electromagnetic
Engineering, ICEME,   Tehran, 2012. (in Persian) ##
 
[7]  Y. Hu and N. G. R. Broderick, “Improved design of a
DFB Raman fibr e laser,” Opt. Commun., vol. 282, no. 16,
pp. 3356 – 3359, 2009. ##
[8]  J. Zheng, N. Song, Yu. Zhang, Yu. Shi, S. Tang, Li. Li, R.
Guo, and Xi. Chen, “An Equivalent -Asymmetric Coupling
Coefficient DFB Laser with High Output Efficiency and
Stable Single Longitudinal Mode Operation,” IEEE
Photon, vol. 6, no. 6, 2014.  ##
[9]  J. Shi, Sh- ul. Alam, and M. Ibsen, “Highly efficient
Raman distributed feedback fibre lasers,” Opt.  Express,
vol. 20, no. 5, pp. 5082– 5091, 2012. ##