تخمین عمق کره رسانای مدفون به عنوان مدلی از مهمات منفجر نشده به کمک داده های القای الکترومغناطیسی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد تویسرکان

چکیده

در این مقاله عمق کره رسانای مدفون به­ عنوان مدلی از یک مین فلزی در یک محیط با رسانایی ضعیف، با استفاده از داده­های القای الکترومغناطیسی محاسبه می­شود. جسم رسانا در محیط با رسانندگی محدود به­وسیله پیچه فرستنده، تحت تابش میدان الکترومغناطیسی قرار می­گیرد. در این حالت دو مد، یکی حاصل از جریان القایی ایجاد شده در سطح جسم (جریان گردابی) و دیگری حاصل از آشفتگی جریان شارشی در محیط رسانا در برخورد با جسم (جریان کانالی)، در محل گیرنده دریافت خواهد شد. در این مقاله برای چهار حالت جهت­گیری هندسی پیچه­ها، پاسخ القای الکترومغناطیسی محاسبه و به کمک روش کمترین مربعات، عمق کره برای دو حالتی که فقط پاسخ جریان گردابی در محل پیچه گیرنده دریافت می­شود تعیین می­گردد. با محاسبه بیشینه مقدار جریان گردابی، مساله تخمین عمق به مساله یافتن پاسخی برای معادله غیرخطی به شکل تبدیل می­شود. روش بر روی داده­های مصنوعی، با و بدون نوفه اعمال و در دو حالت، عمق کره محاسبه گردید. در همه موارد عمق کره با خطای کمتر از 6 درصد به­دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Depth Estimation of a Buried Conductive Sphere as a Model of Unexploded Ordnance Using Electromagnetic Induction Data

چکیده [English]

In  this  paper,  a  novel  scheme  for  depth  estimation  of  a  buried  conductive  sphere  as  a  metallic  mine  using
electromagnetic  induction  (EMI)  data  is  presented.  In  electromagnetic  induction  method,  the  transmitter  coil
produces  the  incident  magnetic  and  electric fields that obey the Maxwell’s equations. In the receiver coil, the
received  response  is  created  in  two  modes.  Eddy-current  mode (
ec
V
) is  derived  from  the  perfect  conductor
placed in the shallow depth and another mode called current-channeling response  (
cc
V
) which depends on the
conductivity of the medium. As expected, these responses differ depending on the direction of the incident field
related to the receiver coil’s axis.  There  is a case that the transmitter coil’s axis is parallel to the ground
surface and only the eddy current response is measured in the receiver coil. By defining the maximum value of ,
ec
V
,the problem with depth determination transformed into the problem with finding a solution for a nonlinear
equation of the form
  0  z f
.The method is applied to synthetic data with and without random errors. In all of
the cases examined, the maximum error in depth is less than 6%. 

کلیدواژه‌ها [English]

  • Electromagnetic Induction
  • Eddy Current
  • Unexploded Ordnance
  • Depth Estimation
 
[1]       Y. Das, J. E. McFee, J. Toews, and G. C. Stuart, “Analysis of an electromagnetic induction detector for real-time location of buried objects,” IEEE Trans. Geosci. Remote Sens., vol. 28, no. 3, pp. 278–288, May 1990.##
[2]       I. J. Won, S. Norton, B. SanFilipo, and F. Funak, “Active broadband electromagnetic detection and classification of buried naval mines,” MTS/IEEE Oceans’02, vol. 2, pp.     966–973, Oct. 2002. ##
[3]       R. Wu, J. Liu, T. Li, Q. Gao, H. Li, and B. Zhang, “Progress in the research of ground bounce removal for landmine detection with ground penetrating radar,” PIERS Online, vol. 1, no. 3, pp. 336–340, 2005.##
[4]       J. P. Fernandez, K. Sun, B. Barrowes, K. O’Neill, Shamatava I., F. Shubitidze,  and K. Pauksen, “Inferring the location of buried UXO using a support vector machine,” Proc. SPIE. 6553, 2007.##
[5]       M. Sato, Y. Hamada, X. Feng, F. Kong, Z. Zeng, and G. Fang, “GPR using an array antenna for landmine detection,” Near Surface Geophysics, pp. 3–9, 2004.##
[6]       M. Mahmoodi and S. Y. Tan, “Depth detection of conducting of marine mines via eddy-current and current –channeling response” Progress In Electromagnetic Research, vol. 90, pp. 287-307, 2009.##
[7]       S. J. Norton, W. A. SanFilipo, and I. J. Won, “Eddy- current and current-channeling response to spheroidal anomalies,” IEEE Trans. Geosci. Remote Sens. vol. 43, pp. 2200-2209, 2005.##
[8]       J. R. Wait, “A conducting sphere in a time-varying magnetic field,” Geophysics, vol. 16, pp. 666–672, 1952. ##
[9]       J. R. Wait, “A conducting permeable sphere in the presence of a coil carrying an oscillating current,” Can. J. Phys., vol. 31, pp. 670–678, 1953.##
[10]       J. R. Wait and K. P. Spies, “Quasi-static transient response of a conducting permeable sphere,” Geophysics, vol. 34, pp. 789-792, 1969.##
[11]       M. N. Nabighian, “Electromagnetic Methods in Applied Geophysics,” Tulsa, OK: Soc. Explor. Geophys., 1987, vol. 1,1963.##
[12]       D. Yogadhish, E. M. John, and H. C. Robert, “Time Domain Response of a Sphere in the Field of a Coil,” IEEE Trans. Geosci. Remote Sens., vol. 22, pp. 360-367, 1984.##
[13]       M. N. Nabighian, “Electromagnetic Methods in Applied Geophysics,” Tulsa, OK: Soc. Explor. Geophys., vol. 1, 1987.##
[14]      J. T. Weaver, “Mathematical Methods for  Geo-electromagnetic Induction,” John Wiley and Sons, Inc, 1994.##
[15]       L. R. Pasion, “Detecting Unexploded Ordnance with time domain electromagnetic induction,” Master thesis, University of British Colombia, 1999.##
[16]       M. Babaei, M. Meshinch-Asl, and H. Zomorrodian, “Computing Eddy-Current Response and Current Channeling Response of the Spheroidal Conductor for the Separated Receiver and Transmitter Systems,” Arab J. Geosci., vol. 6, no. 6, pp. 1913-1934, 2013.##
[17]       M. Babaei, M. Meshinch-Asl, and H. Zomorrodian, “Estimation of depth of buried conductive sphere from electromagnetic induction anomaly data using linearization process,” Arab J. Geosci., vol. 7, pp. 2363–2366, 2014.##