مدلسازی تلفات جریان گردابی سلف های توان بالا با هسته های مورق در سامانه موقعیت یاب زمین پایه

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 صنعتی مالک اشتر

چکیده

فرستنده جریانی سامانه موقعیت یاب زمین پایه محلی لوران از چندین سلف توان بالا هسته‌های فریتی یا فلزی استفاده می‌نماید. رفتار غیرخطی این سلف‌ها با تغییرات فرکانس کاری فرستنده در تلفات جریان گردابی و به طبع در راندمان فرستنده بسیار حائز اهمیت است. در این مقاله روابط تلفات جریان گردابی در سلف‌های سلونوئیدی توان بالا با هسته‌های مورق ارایه می‌گردد و نشان داده می‌شود که این روابط می‌تواند به عنوان مدلی مرجع، در فرکانس‌های مختلف برای سلف‌های توان بالا با هسته مورق استفاده می‌شوند. نتایج حاصل از مدل‌سازی و شبیه‌سازی نشان خواهد داد که پارامترهای غیرخطی موجود در سلف چه اثراتی بر روی عملکرد سلف های فرستنده خواهند گذاشت. در این تحقیق نشان داده خواهد شد که فرکانسKHz 100 فرستنده جریان لورن ساخته شده مرز کاهش نرخ تلفات جریان گردابی و افزایش راندمان در این فرستنده است. همچنین نشان داده می‌شود که زیر این فرکانس تلفات جریان گردابی با و بالای این فرکانس تلفات جریان گردابی با متناسب است.

کلیدواژه‌ها


[1]     Z. Lili, Xi. Xiaoli, J. Zhang, and Y. Pu, “A New Method for Loran-C ASF Calculation over Irregular Terrain,” IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1738-1744, 2013.
[2]      G. Johnson, R. Shalaev, R. Hartnett, P. Swaszek, and M. Narins, “Can Loran meet GPS backup requirements?,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 2, pp. 3-12, 2005.
[3]     C. L. Sherman, B. B. Peterson, C. O. Lee Boyce Jr., and K. Enge, Per, “Loran Coverage Availability Simulation Tool,” In Proceedings of the Royal Institute of Navigation NAV08/ International Loran Association 37th Annual Meeting, London, UK, Oct. 2008.
[4]     G. W. Johnson, P. F. Swaszek, R. J. Hartnett, R. Shalaev, and M. Wiggins, “An Evaluation of Eloran As A Backup to GPS,” IEEE Conference on Technologies for Homeland Security, May 2007.
[5]     C. L. Sherman, R. Wenzel, G. Johnson, and P. K. Enge, “Assessment of The Methodology for Bounding Loran     Tem- Poral ASF For Aviation,” In Proceedings of the Institute of Navigation National Technical Meeting, San Diego, CA, 2008.
[6]     J. Avila-Montes, D. Campos-Gaona, E. Melgoza Vázquez, and J. R. Rodríguez-Rodríguez, “A Novel Compensation Scheme Based on a Virtual Air Gap Variable Reactor for AC Voltage Control,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6547-6555, 2014.
[7]     M. Nazari-Heris, H. Nourmohamadi, M. Abapour, and M. Sabahi, “Multilevel Nonsuperconducting Fault Current Limiter: Analysis and Practical Feasibility,” IEEE Transactions on Power Electronics, vol. 32, no. 8, pp.      6059-6068, 2017.
[8]     J. Zhao, P. Yue, L. Grekhov, and X. Ma, “Current Effects on The Power Losses of High-Speed Solenoid Valve for Common-Rail Injector,” Applied Thermal Engineering, vol. 128, pp. 1579-158, 2018.
[9]     Z. vDeng, Y.  Kang, J. Zhang, and K. Song, “Multi-source Effect in Magnetizing-based Eddy Current Testing Sensor for Surface Crack in Ferromagnetic Materials,” Sensors and Actuators A: Physical, vol. 271, pp. 24-36, 2018.
[10]  C. Fernandez, Z. Pavlovic, S. Kulkarni, P. McCloskey, and C. O'Mathuna, “Novel High Frequency Electrical Characterization technique for Magnetic Passive Devices,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 621-628, 2018.
[11]  M. E. Mosleh and M. R. Besmi, “Calculation of the Current and Efficiency of High Frequency MCG Generator in Time of Explosion Progress by Using New Method of NUEC,” Canadian Journal IEEE, vol. 2, no. 7, pp. 332-339, 2011.
[12]  P. N. Murgatroyd, “The Brooks Inductor: A Study of Optimal Solenoid Cross-Sections,” IEEE Proceedings B (Electric Power Applications), vol. 133, no. 5, 1986.
[13]  D. Egorov, I. Petrov, J. Link, R. Stern, and J. J. Pyrhönen, “Model-Based Hysteresis Loss Assessment in PMSMs With Ferrite Magnets,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 179-188, 2018.
[14]  A. W. Barr, “Calculation of Frequency-Dependent Impedance for Conductors of Rectangular Cross Section,” AMP Journal of Technology, vol. 1, pp. 91-100, 2004.
[15]  S. C. Lo, “Broadcasting GPS Integrity Information Using Loran-C,” Ph.D. Thesis, Stanford University, 2002.
[16]  Patent no: 7,064,705 B2, Application no: 10/877000, Dated: June 20, 2006.
[17]  M. R. Alizadeh Pahlavani, “New Approach in Designing the Generators of the Current Compressor with Increasing the Energy Efficiency and Signal Quality of the Lauren-based Ground Positioning System,” Electromagnetics Journal, Applied, vol. 3, no. 3, pp. 1-10, 2016.( In Persian)
[18]  U. Reggiani and G. Grandi, “Quency Behavior of Laminated Iron-Core Inductors for Filter Applications,” IEEE APEC, vol. 2, pp. 654-660, 2000.
[19]  H. Wang and Y. Zhang, “Modeling of Eddy-Current Losses of Welded Laminated Electrical Steels,” IEEE transactions on industrial electronics, vol. 64, no. 4, pp. 40-44, 2017.
[20]  Z. Deng, Y. Kang, J. Zhang, and K. Song, “Multi-Source Effect in Magnetizing-Based Eddy Current Testing Sensor for Surface Crack in Ferromagnetic Materials,” Sensors and Actuators A: Physical, vol. 271, pp. 24-36, 2018.
[21]  N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics,” 2nd Ed., New York: Wiley, pp. 749-750, 1995.