مدلسازی عددی تلفات جریان متناوب نوارهای ابررسانای دما بالای نسل دوم تحت میدان‌های مغناطیسی خارجی متغیر به روش اجزاء محدود

نویسندگان

دانشگاه صنعتی نوشیروانی بابل

چکیده

امروزه ابررسانایی یکی از فناوری‌های پیشرو در زمینه‌های کاربردی بخصوص در زمینه مهندسی برق می‌باشد. امکان بهره‌گیری از این فناوری در ساخت تجهزات قدرت الکتریکی با راندمان بیشتر، تلفات کمتر، قابلیت اطمینان بالاتر و نیز ابعاد و اندازه‌های کوچکتر نسبت به تجهیزات غیرابررسانای موجود، زمینه را برای مطالعه و سرمایه‌گذاری بیشتر در امر تحقیق و توسعه این فناوری فراهم آورده است. از مهمترین ویژگی‌های نوارهای ابررسانای دما بالای نسل دوم چگالی جریان بسیار زیاد آنها و نیز تلفات جریان متناوب بسیار کم نسبت به هادی‌های مسی می‌باشد. ابررساناهای دما بالای برپایه دوتریم تا 100 برابر چگالی جریان بالاتر از مس و البته قیمتی 20 برابر هادی مسی دارند. میزان تلفات جریان متناوب نوارهای ابررسانا، یکی از محدودیت‌های مهم طراحی برای کاربردهای تجهیزات قدرت الکتریکی است. بدین منظور روش‌های متعددی برای اندازه‌گیری، تخمین و محاسبه این میزان تلفات در منابع معتبر منتشر شده که یکی از روش‌های موثر، روش‌های عددی می‌باشند که کم هزینه، سریع و با توجه به مقایسه آنها با روش‌های مبتنی بر اندازه گیری، دقیق هم هستند. در این مقاله، مدلسازی عددی برای محاسبه تلفات جریان متناوب نوارهای ابررسانای دما بالای نسل دوم بر پایه دوتریم به روش اجزاء محدود و با استفاده از فرمولسازی H در سه حالت تحت میدان مغناطیسی خارجی، در حالت جریان حامل و نیز اعمال همزمان هر دو حالت انجام شده است. شایان ذکر می‌باشد در هر حالت، نتایج برای زمانیکه جریان بحرانی مستقل از و یا وابسته به چگالی شار مغناطیسی بوده محاسبه و تحلیل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Fabrication of Microstrip Antenna Using Log-Periodic Array for Bandwidth Enhancement with Inset and Proximity Feed

چکیده [English]

This study deals with a design and implementation of a microstrip patch antenna array that are feeding by Inset
and  Proximity  methods.  Results  showed  that  antenna  would  have  high  frequency  bandwidth  and  better
impedance matching in Inset feeding. Also in Proximity feeding, unwanted radiation vanished because T-shape
connections were eliminated. Simulation and experimental results cleared that antenna in the Proximity method
has  a  smaller  size,  more  gain  and  better  impedance  bandwidth  than  the  Inset  method.  This  paper  chooses
dielectric  material  FR4  with  dielectric  substrate  permittivity  of  4.4  by  h=1.6mm.  Therefore,  operational
frequency  and  input  impedance  are  equal  to  3.03  GHz  and  50  ohm.  Meanwhile,  results  showed  impedance
bandwidth and gain increased from 2.7% and 2dB for single arrays to 27.4% and 8dB for 5 arrays.

کلیدواژه‌ها [English]

  • AC Loss
  • External Magnetic Field
  • Finite Element Method
  • High Temperature Superconductors
  • Transport Current Loss
[1]     X. Liu et al., “A Method of Designing a Dual-Band Sector Ring Microstrip Antenna and its Application,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 11 2016.
[2]     B. Lethacumary, Sreedevi K. Menon, Priya Francis, C. A. Aanandan, K. vasudevan, and P. Mohanan, “Wideband microstrip antenna using Hook-shaped feed” Microwave and Optical Technology Letters, vol. 44, no. 2, Jan. 2015.
[3]     B. Babakhani, S. Satish, and N. R. Labadie, “A Frequency Agile Microstrip Patch Phased Array Antenna with Polarization Reconfiguration,” submitted to IEEE Transactions Antennas and Propagation, 2016.
[4]     E. Abdo-Sánchez et al., “A novel planar log-periodic array based on the wideband complementary strip-slot element,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5572-5580, 2014.
[5]     A. Sharifi and J. Khalilpour, “Patch Antenna Gain Enhancement with Meta-Material Spilt Ring Resonator Radome,” Journal of Applied Electromagnetics, vol. 3, no. 3, pp. 39-44, 2015
[6]     S. A. Mirmanafi and H. Khodabakhshi, “Design and Construction of Frequency Reconfigurable Micro-Strip UWB Antenna with Triple Controllable Notched Bands,” Journal of Applied Electromagnetics, vol. 3, no. 3, pp. 31-37, 2015.
[7]      J. J. Luther, S. Ebadi, and X. Gong, “A Low-Cost 2 2 Planar Array of Three-Element Microstrip Electrically Steerable Parasitic Array Radiator (ESPAR) Subcells,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no.10, pp. 2325-2336, 2014.
[8]     A. T. Almutawa and G. Mumcu, “Small artificial magnetic conductor backed log-periodic microstrip patch antenna,” IET Microwaves, Antennas & Propagation, vol. 7, no. 14, pp. 1137-1144, 2013.
[9]     H. Pues, J. Bogaers, R. Pieck, and A. van de Capelle, “Wideband quasi log-periodic microstrip antennas,” Proc. Inst. Elect. Eng. Microw., Antennas Propag., vol. 128, no. 3, pp. 159–163, dec. 2007.
[10]  X. Li et al., “Study on phase velocity tapered microstrip angular log-periodic meander line travelling wave tube,” IET Microwaves, Antennas & Propagation, vol. 10, no. 8, pp. 902-907, 2016.
[11]  D.-F. Guan et al., “Compact Microstrip Patch Array Antenna With Parasitically Coupled Feed,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2531-2534, 2016.
[12]  H. Pues, J. Bogaers, R. Pieck, and A. van de Capelle, “Wideband quasi log-periodic microstrip antennas,” Proc. Inst. Elect. Eng. Microw., Antennas Propag., vol. 128, no. 3, pp. 159–163, dec. 2007.
[13]  C. A. Balanis, “Antenna Theory Analysis and Design,” 3rd ed. John Wiley & Sons, New York, pp. 619-637, 2005.
[14]  H. Pues, J. Bogaers, R. Pieck, and A. van de Capelle, “Wideband quasi log-periodic microstrip antennas,” Proc. Inst. Elect. Eng. Microw., Antennas Propag., vol. 128, no. 3, pp. 159–163, dec. 2007.
[15]  B. Lethacumary, S. K. Menon, P. Francis, C. A. Aanandan, K. vasudevan, and P. Mohanan “Wideband microstrip antenna using Hook-shaped feed,” Microwave and Optical Technology Letters, vol. 44, no. 2, Jan. 2005.
[16]  C. L. Mak, K. F. Lee, and K. M. Luk, “Broadband patch Antenna with a T-shaped Probe,” IEEE proc Microwave antenna propag, vol. 147, no. 2, Apr. 2010.
[17]  P. S. Hall, “New Wideband Microstrip Antenna Using    Log-Periodic Technique,” Electronics Letters, vol. 16, no. 4, pp. 127-128, Feb. 1980.