طراحی و ساخت آنتن میکرواستریپ با پهنای باند بالا به روش آرایه‌ی متناوب لگاریتمی با تغذیه Inset و Proximity

نویسندگان

1 دانشگاه پدافند هوایی خاتم الانبیاء(ص)

2 دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله برای افزایش پهنای باند آنتن‌های میکرواستریپی، از آرایه‌های متناوب لگاریتمی استفاده شده است و برای تغذیه آرایه‌ها نیز روش‌های تغذیه‌ی ‌Inset و Proximity انتخاب شدند. شبیه‌سازی‌ها و نتایج آزمایشگاهی نشان دادند که با استفاده از تغذیه Inset پهنای باند افزایش یافته و تطبیق امپدانسی بهتر از ترمینال ورودی حاصل می‌شود. بعلاوه با استفاده از تغذیه Proximity به دلیل حذف اتصالات T شکل و لحیم‌کاری‌ها، تشعشعات ناخواسته از بین رفته و در نتیجه بهره و پهنای باند بیشتر و ابعاد کوچکتری نسبت به آنتن با تغذیه Inset به دست می‌آید. در این مقاله از یک ماده دی‌الکتریک از جنس FR4 با ضخامت mm6/1 و ثابت دی‌الکتریک 4/4ε_r= استفاده شده است و فرکانس تشدید و امپدانس مشخصه خط تغذیه به ترتیب GHz 03/3 و Ω50 در نظر گرفته شده‌اند. با استفاده از آرایه متناوب لگاریتمی، پهنای‌باند امپدانسی و بهره‌ی آنتن میکرواستریپ به ترتیب از %7/2 و حدودdB 2 برای تک المان، به %4/27 وdB 8 برای 5 المان افزایش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Fabrication of Microstrip Antenna Using Log-Periodic Array for Bandwidth Enhancement with Inset and Proximity Feed

چکیده [English]

This study deals with a design and implementation of a microstrip patch antenna array that are feeding by Inset
and Proximity methods. Results showed that antenna would have high frequency bandwidth and better
impedance matching in Inset feeding. Also in Proximity feeding, unwanted radiation vanished because T-shape
connections were eliminated. Simulation and experimental results cleared that antenna in the Proximity method
has a smaller size, more gain and better impedance bandwidth than the Inset method. This paper chooses
dielectric material FR4 with dielectric substrate permittivity of 4.4 by h=1.6mm. Therefore, operational
frequency and input impedance are equal to 3.03 GHz and 50 ohm. Meanwhile, results showed impedance
bandwidth and gain increased from 2.7% and 2dB for single arrays to 27.4% and 8dB for 5 arrays..  

کلیدواژه‌ها [English]

  • Microstrip Antenna
  • Log-Periodic Array
  • Inset Feed
  • Proximity Feed
  • Impedance Matching
[1]     X. Yang, X. Li, Y. He, X. Wang,  and B. Xu, “Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model,” Physica C: Superconductivity and its applications, vol. 535, pp. 1-8, 2017.
[2]     B. G. Marchionini, Y. Yamada, L. Martini, and H. Ohsaki, “High Temperature Superconductivity: A Roadmap for Electric Power Sector Applications, 2015-2030,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-6, 2017.
[3]     S. Fukui, S. Tsukamoto, K. Nohara, J. Ogawa, T. Sato, and T. Nakamura, “Study on AC Loss Reduction in HTS Coil for Armature Winding of AC Rotating Machines,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, 2016.
[4]     X. Obradors and T. Puig, “Coated conductors for power applications: materials challenges,” Superconductor Science and Technology, vol. 27, pp. 1-17, 2014.
[5]     S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, G. Meunier, P. Tixador, Y. Yang, and E. Martinez, “Comparison of numerical methods for modeling of superconductors,” IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 849-852, 2002.
[6]     A. M. Campbell, “A direct method for obtaining the critical state in two and three dimensions,” Superconductor Science and Technology, vol. 22, pp. 1-8, 2009.
[7]     S. Stavrev, F. Grilli, B. Dutoit, and S. P. Ashworth, “Comparison of the AC losses of BSCCO and YBCO conductors by means of numerical analysis,” Superconductor Science and Technology, vol. 18, no. 10, pp. 1300-1312, 2005.
[8]     Y. Ichiki and H. Ohsaki, “Numerical analysis of ac loss characteristics of YBCO coated conductors arranged in parallel,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 2851-2854, 2005.
[9]     V. M. Rodriguez-Zermeno, N. Mijatovic, C. Traholt, T. Zirngibl, E. Seiler, A. B. Abrahamsen, N. F. Pedersen, and M. P. Sorensen, “Towards Faster FEM Simulation of Thin Film Superconductors: A Multiscale Approach,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3273-3276, 2011.
[10]  A. Stenvall, V. Lahtinen, and M. Lyly, “An H-formulation-based three-dimensional hysteresis loss modelling tool in a simulation including time varying applied field and transport current: the fundamental problem and its solution,” Superconductor Science and Technology, vol. 27, no. 10, pp. 1-7, 2014.
[11]  Z. Hong and T. A. Coombs, “Numerical Modelling of AC Loss in Coated Conductors by Finite Element Software Using H Formulation,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1551-1562, 2010.
[12]  M. D. Ainslie, T. J. Flack, Z. Hong, and T. A. Coombs, “Comparison of first- and second-order 2D finite element models for calculating AC loss in high temperature superconductor coated conductors,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30, no. 2, pp. 762-774, 2011.
[13]  G. Escamez, A. Badel, P. Tixador, B. Ramdane, G. Meunier, A. Allais, and C. E. Bruzek, “Numerical Modelling of AC Hysteresis Losses in HTS Tubes,” IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1-5, 2015.
[14]  S. Li, D. X. Chen, Y. Fan, and J. Fang, “Transport ac loss in a rectangular thin strip with power-law E(J) relation,” Physica C: Superconductivity and its applications, vol. 508, pp. 12-16, 2015.
[15]  D. X. Chen, S. Li, and J. Fang, “Scaling law and general expression for transport ac loss of a rectangular thin strip with power-law E(J) relation,” Physica C: Superconductivity and its applications, vol. 519, pp. 89-94, 2015.
[16]  V. M. R. Zermeno, K. Habelok, M. Stepien, and F. Grilli, “A parameter-free method to extract the superconductor’s Jc(B,θ) field-dependence from in-field current–voltage characteristics of high temperature superconductor tapes,” Superconductor Science and Technology, vol. 30, no. 3, pp. 1-7, 2017.
[17]  F. Gomory, M. Vojenciak, E. Pardo, M. Solovyov, and J. Souc, “AC losses in coated conductors,” Superconductor Science and Technology, vol. 23, no. 3, pp. 1-9, 2010.
[18]  F. Grilli, E. Pardo, A. Stenvall, D. N. Nguyen, W. Yuan, and F. Gomory, “Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents,” IEEE Transactions on Applied Superconductivity, vol. 24, no. 1, pp. 1-33, 2014.
[19]  X. Pei, A. C. Smith, M. Barnes, “AC Losses Measurement and Analysis for a 2G YBCO Coil in Metallic Containment Vessels,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, 2017.
[20]  J. H. Kim, C. H. Kim, G. Iyyani, J. Kvitkovic, and S. Pamidi, “Transport AC Loss Measurements in Superconducting Coils,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3962-3972, 2011.
[21]  C. M. Rey, R. C. Duckworth, S. W. Schwenterly, and E. Pleva, “Electrical AC Loss Measurements on a 2G YBCO Coil,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 2424-2427, 2011.
[22]  L. Queval, V. M. R. Zermeno, and F. Grilli, “Numerical models for ac loss calculation in large-scale applications of HTS coated conductors,” Superconductor Science and Technology, vol. 29, no. 2, pp. 1-10, 2016.
[23]  R. Brambilla, F. Grilli, L. Martini, and F. Sirois, “Integral equations for the current density in thin conductors and their solution by the finite-element method,” Superconductor Science and Technology, vol. 21, no. 10, pp. 1-8, 2008.
[24]  D. N. Nguyen, S. P. Ashworth, and J. O. Willis, “Experimental and finite-element method studies of the effects of ferromagnetic substrate on the total ac loss in a rolling-assisted biaxially textured substrate YBa2Cu3O7 tape exposed to a parallel ac magnetic field,” Journal of Applied Physics, vol. 106, no. 9, pp. 1-7, 2009.
[25]  Y. Wang, H. Song, W. Yuan, Z. Jin, and Z. Hong, “Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil,” Journal of Applied Physics, vol. 121, no. 11, pp. 1-16, 2017.
[26]  B. Shen, J. Li, J. Geng, L. Fu, X. Zhang, H. Zhang, C. Li, F. Grilli, and T. A. Coombs, “Investigation of AC losses in horizontally parallel HTS tapes,” Superconductor Science and Technology, vol. 30, no. 7, pp. 1-9, 2017.