طراحی و ساخت آنتن میکرواستریپ با پهنای باند بالا به روش آرایه‌ی متناوب لگاریتمی با تغذیه Inset و Proximity

نویسندگان

1 دانشگاه پدافند هوایی خاتم الانبیاء(ص)

2 دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله برای افزایش پهنای باند آنتن‌های میکرواستریپی، از آرایه‌های متناوب لگاریتمی استفاده شده است و برای تغذیه آرایه‌ها نیز روش‌های تغذیه‌ی ‌Inset و Proximity انتخاب شدند. شبیه‌سازی‌ها و نتایج آزمایشگاهی نشان دادند که با استفاده از تغذیه Inset پهنای باند افزایش یافته و تطبیق امپدانسی بهتر از ترمینال ورودی حاصل می‌شود. بعلاوه با استفاده از تغذیه Proximity به دلیل حذف اتصالات T شکل و لحیم‌کاری‌ها، تشعشعات ناخواسته از بین رفته و در نتیجه بهره و پهنای باند بیشتر و ابعاد کوچکتری نسبت به آنتن با تغذیه Inset به دست می‌آید. در این مقاله از یک ماده دی‌الکتریک از جنس FR4 با ضخامت mm6/1 و ثابت دی‌الکتریک 4/4ε_r= استفاده شده است و فرکانس تشدید و امپدانس مشخصه خط تغذیه به ترتیب GHz 03/3 و Ω50 در نظر گرفته شده‌اند. با استفاده از آرایه متناوب لگاریتمی، پهنای‌باند امپدانسی و بهره‌ی آنتن میکرواستریپ به ترتیب از %7/2 و حدودdB 2 برای تک المان، به %4/27 وdB 8 برای 5 المان افزایش می یابد.

کلیدواژه‌ها


[1]     X. Yang, X. Li, Y. He, X. Wang,  and B. Xu, “Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model,” Physica C: Superconductivity and its applications, vol. 535, pp. 1-8, 2017.
[2]     B. G. Marchionini, Y. Yamada, L. Martini, and H. Ohsaki, “High Temperature Superconductivity: A Roadmap for Electric Power Sector Applications, 2015-2030,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-6, 2017.
[3]     S. Fukui, S. Tsukamoto, K. Nohara, J. Ogawa, T. Sato, and T. Nakamura, “Study on AC Loss Reduction in HTS Coil for Armature Winding of AC Rotating Machines,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, 2016.
[4]     X. Obradors and T. Puig, “Coated conductors for power applications: materials challenges,” Superconductor Science and Technology, vol. 27, pp. 1-17, 2014.
[5]     S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, G. Meunier, P. Tixador, Y. Yang, and E. Martinez, “Comparison of numerical methods for modeling of superconductors,” IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 849-852, 2002.
[6]     A. M. Campbell, “A direct method for obtaining the critical state in two and three dimensions,” Superconductor Science and Technology, vol. 22, pp. 1-8, 2009.
[7]     S. Stavrev, F. Grilli, B. Dutoit, and S. P. Ashworth, “Comparison of the AC losses of BSCCO and YBCO conductors by means of numerical analysis,” Superconductor Science and Technology, vol. 18, no. 10, pp. 1300-1312, 2005.
[8]     Y. Ichiki and H. Ohsaki, “Numerical analysis of ac loss characteristics of YBCO coated conductors arranged in parallel,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 2851-2854, 2005.
[9]     V. M. Rodriguez-Zermeno, N. Mijatovic, C. Traholt, T. Zirngibl, E. Seiler, A. B. Abrahamsen, N. F. Pedersen, and M. P. Sorensen, “Towards Faster FEM Simulation of Thin Film Superconductors: A Multiscale Approach,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3273-3276, 2011.
[10]  A. Stenvall, V. Lahtinen, and M. Lyly, “An H-formulation-based three-dimensional hysteresis loss modelling tool in a simulation including time varying applied field and transport current: the fundamental problem and its solution,” Superconductor Science and Technology, vol. 27, no. 10, pp. 1-7, 2014.
[11]  Z. Hong and T. A. Coombs, “Numerical Modelling of AC Loss in Coated Conductors by Finite Element Software Using H Formulation,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1551-1562, 2010.
[12]  M. D. Ainslie, T. J. Flack, Z. Hong, and T. A. Coombs, “Comparison of first- and second-order 2D finite element models for calculating AC loss in high temperature superconductor coated conductors,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30, no. 2, pp. 762-774, 2011.
[13]  G. Escamez, A. Badel, P. Tixador, B. Ramdane, G. Meunier, A. Allais, and C. E. Bruzek, “Numerical Modelling of AC Hysteresis Losses in HTS Tubes,” IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1-5, 2015.
[14]  S. Li, D. X. Chen, Y. Fan, and J. Fang, “Transport ac loss in a rectangular thin strip with power-law E(J) relation,” Physica C: Superconductivity and its applications, vol. 508, pp. 12-16, 2015.
[15]  D. X. Chen, S. Li, and J. Fang, “Scaling law and general expression for transport ac loss of a rectangular thin strip with power-law E(J) relation,” Physica C: Superconductivity and its applications, vol. 519, pp. 89-94, 2015.
[16]  V. M. R. Zermeno, K. Habelok, M. Stepien, and F. Grilli, “A parameter-free method to extract the superconductor’s Jc(B,θ) field-dependence from in-field current–voltage characteristics of high temperature superconductor tapes,” Superconductor Science and Technology, vol. 30, no. 3, pp. 1-7, 2017.
[17]  F. Gomory, M. Vojenciak, E. Pardo, M. Solovyov, and J. Souc, “AC losses in coated conductors,” Superconductor Science and Technology, vol. 23, no. 3, pp. 1-9, 2010.
[18]  F. Grilli, E. Pardo, A. Stenvall, D. N. Nguyen, W. Yuan, and F. Gomory, “Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents,” IEEE Transactions on Applied Superconductivity, vol. 24, no. 1, pp. 1-33, 2014.
[19]  X. Pei, A. C. Smith, M. Barnes, “AC Losses Measurement and Analysis for a 2G YBCO Coil in Metallic Containment Vessels,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, 2017.
[20]  J. H. Kim, C. H. Kim, G. Iyyani, J. Kvitkovic, and S. Pamidi, “Transport AC Loss Measurements in Superconducting Coils,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3962-3972, 2011.
[21]  C. M. Rey, R. C. Duckworth, S. W. Schwenterly, and E. Pleva, “Electrical AC Loss Measurements on a 2G YBCO Coil,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 2424-2427, 2011.
[22]  L. Queval, V. M. R. Zermeno, and F. Grilli, “Numerical models for ac loss calculation in large-scale applications of HTS coated conductors,” Superconductor Science and Technology, vol. 29, no. 2, pp. 1-10, 2016.
[23]  R. Brambilla, F. Grilli, L. Martini, and F. Sirois, “Integral equations for the current density in thin conductors and their solution by the finite-element method,” Superconductor Science and Technology, vol. 21, no. 10, pp. 1-8, 2008.
[24]  D. N. Nguyen, S. P. Ashworth, and J. O. Willis, “Experimental and finite-element method studies of the effects of ferromagnetic substrate on the total ac loss in a rolling-assisted biaxially textured substrate YBa2Cu3O7 tape exposed to a parallel ac magnetic field,” Journal of Applied Physics, vol. 106, no. 9, pp. 1-7, 2009.
[25]  Y. Wang, H. Song, W. Yuan, Z. Jin, and Z. Hong, “Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil,” Journal of Applied Physics, vol. 121, no. 11, pp. 1-16, 2017.
[26]  B. Shen, J. Li, J. Geng, L. Fu, X. Zhang, H. Zhang, C. Li, F. Grilli, and T. A. Coombs, “Investigation of AC losses in horizontally parallel HTS tapes,” Superconductor Science and Technology, vol. 30, no. 7, pp. 1-9, 2017.