گسترش پهنای پرتو آنتن آرایه‌ای مایکرواستریپ به کمک لایه‌های تطبیق امپدانس زاویه گسترده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله یک روش جدید برای محاسبه ضریب انعکاس فعال آنتن‌های آرایه-ای ارائه شده‌است و به کمک آن، لایه تطبیق امپدانس ناهمسانگرد جهت انتقال نقاط کور طراحی شده‌است. آنتن طراحی شده شامل یک آرایه‌ی مایکرواستریپ با چیدمان مستطیلی بوده که فاصله بین عناصر آن برابر 63/0 طول موج در باند فرکانسی X می‌باشد. جهت جبران عدم تطبیق امپدانس بین آنتن و فضای آزاد بالای دریچه در نزدیکی نقاط کور و همچنین افزایش بازه پویش آنتن، با استفاده از روش بهینه‌سازی الگوریتم ژنتیک، مشخصات لایه تطبیق ناهمسانگرد استخراج می‌شود. سپس در نرم‌افزارهایCST MICROWAVE STUDIO@2016 و HFSS کارآمدی آن بررسی می‌گردد. از مزایای روش پیشنهادی نسبت به سایر روش‌ها می‌توان به سادگی، سرعت بالاتر، عدم نیاز به ساخت و اندازه‌گیری ضرایب تزویج آنتن اشاره کرد. این روش، یک ابزار قوی برای محاسبه ضریب انعکاس فعال آنتن‌های آرایه‌ای مایکرواستریپ ،که استخراج معادلات تحلیلی برای آن-ها دشوار است، به حساب می‌آید. لایه تطبیق امپدانس زاویه گسترده طراحی شده با انتقال نقاط کور سبب افزایش بازه پویش آنتن از °34± به °42± شده-است.

کلیدواژه‌ها


[1] Y. Haghian, S. H. Mohseni Armaki, M. Kazerooni, “Design, Simulation and Realization of S band Circular Polarization Microstrip Array Antenna ,” Applied. Electromagnetic, No. 1, pp. 49-54, 2015(In Persian).
[2] D. M. Pozar, “Scanning characteristics of infinite arrays of printed antenna subarrays,” IEEE Transactions on Antennas and Propagation ., Vol. 40, No. 6, pp. 666-674, 1992.
[3] R. B. Waterhouse, “The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays,” IEEE Transactions on Antennas and Propagation ., Vol. 44, No. 3, pp. 302-309, 1996.
[4] W.-J. Tsay and D. M. Pozar, “Radiation and scattering from infinite periodic printed antennas with inhomogeneous media,” IEEE Transactions on Antennas and Propagation ., Vol. 46, No. 11, pp. 1641-1650, 1998.
[5] R. L. Chen, D. R. Jackson, J. T. Williams, and S. A. Long, “Scan impedance of RSW microstrip antennas in a finite array,” IEEE Transactions on Antennas and Propagation ., Vol. 53, No. 3, pp. 1098-1104, 2005.
[6] T. Crépin et al., “Blind spot mitigation in phased array antenna using metamaterials,” In the Int. Radar Conf, 2014, pp. 1-4.
[7] D. M. Pozar and D. H. Schaubert, “Microstrip antennas: the analysis and design of microstrip antennas and arrays” John Wiley & Sons Inc.: New Jersey, 1995.
[8] H. Moghadas, A. Tavakoli, and M. Salehi, “Elimination of scan blindness in microstrip scanning array antennas using defected ground structure,” AEU-International Journal of Electronics and Communications., Vol. 62, No. 2, pp. 155-158, 2008.
[9] M. Isa et al.,“A technique of scan blindness elimination for planar phased array antenna using miniaturized EBG,” Journal of Teknologi, Vol. 69, No. 2, pp.11-15, 2014.
[10] Z. Iluz, R. Shavit, and R. Bauer,“Microstrip antenna phased array with electromagnetic bandgap substrate,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, pp. 1446-1453, 2004.
[11] S. Sajuyigbe,“Electromagnetic metamaterials for antenna applications,” Ph.D. Thesis, Duke Univ., Durham, NC, 2010.
[12] E. Magill and H. Wheeler,“Wide-angle impedance matching of a planar array antenna by a dielectric sheet,” IEEE Transactions on Antennas and Propagation ., Vol. 14, No. 1, pp. 49-53, 1966.
[13] S. Sajuyigbe, M. Ross, P. Geren, S. Cummer, M. Tanielian, and D. Smith, “Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas,” IET Microwave, Antennas & Propagation, Vol. 4, No. 8, pp. 1063-1072, 2010.
[14] T. R. Cameron and G. V. Eleftheriades, “Analysis and characterization of a wide-angle impedance matching metasurface for dipole phased arrays,” IEEE Transactions on Antennas and Propagation ., Vol. 63, No. 9, pp. 3928-3938, 2015.
[15] P. Rodriguez-Ulibarri et al., “Metaradome for blind spot mitigation in phased-array antennas,” Eu. Conf. on Antennas and Propa., 2014, 2504-2508.
[16] P. Rodríguez Ulibarri et al.,“Experimental demonstration of metamaterials application for mitigating scan blindness in phased array antennas,” EPJ Applied metamaterials, Vol. 3, No. 9, pp 1-9, 2016.
[17] A. K. Bhattacharyya, “Phased array antennas: Floquet analysis, synthesis, BFNs and active array systems”; John Wiley & Sons Inc.: New Jersey, 2006.
[18] E. Adas, F. De Flaviis, and N. G. Alexopoulos,“Integrated microstrip antennas and phased arrays with mode-free electromagnetic bandgap materials for scan blindness elimination,” Electromagnetics, Vol. 37, No. 1, pp. 1-16, 2017.
[19] N. R. Labadie, S. K. Sharma, and G. M. Rebeiz, “A novel approach to beam steering using arrays composed of multiple unique radiating modes,” IEEE Transactions on Antennas and Propagation ., Vol. 63, No. 7, pp. 2932-2945, 2015.
[20] F. Silvestri, L. Cifola, and G. Gerini, “Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays,” Progress in electromagnetics research B, Vol. 70,pp 1-12, 2016.
[21] R. L. Haupt and S. E. Haupt, “Practical genetic algorithms” John Wiley & Sons Inc.: New Jersey, 2004.