آشکارسازهای نانوساختارگرافنی برمبنای EIT به منظور تشخیص مواد منفجره با استفاده از امواج تراهرتز

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه جامع امام حسین (ع)

چکیده

مواد مختلف طیف جذبی مختلفی نسبت به امواج تراهرتز دارند. بنابراین با آشکارسازی طیف جذبی امواج تراهرتز از مواد مختلف می‌توان نوع ماده را تشخیص داد. یکی از راه‌های بسیار مؤثر در آشکارسازی طیف امواج تراهرتز به‌منظور تشخیص مواد مختلف استفاده از پدیده­ی شفافیت القایی الکترومغناطیسی (EIT) در یک نانوساختار گرافنی تحت میدان مغناطیسی می­باشد. در این مقاله آشکارسازی امواج تراهرتز به‌وسیله‌ی نانوساختار گرافن واقع در هسته­ی آشکارساز از یک روش تمام اپتیکی موردبررسی قرارگرفته است. در این طرح به‌منظور تشخیص امواج تراهرتز به‌طور عمده اندازه‌گیری رفتار طیف عبوری نور کاوشگر ضعیف از نانو­ساختار گرافنی که باوجود و عدم وجود طیف مشخصی از امواج تراهرتز مرتبط است صورت می­گیرد. گذارهای اپتیکی فرکانسی بین سطوح انرژی موجود در گرافن توسط میدان مغناطیسی خارجی قابل تنظیم می­باشد که برای آشکارسازی امواج تراهرتز در محدوده­ی طیفی موردنظر مورداستفاده قرار می­گیرد. این ویژگی باعث می­شود که آشکارسازی انواع مواد منفجره با طیف‌های جذبی مختلف نسبت به امواج تراهرتز  به‌طور تمام اپتیکی موردبررسی قرار گیرد. ازجمله مواد منفجره مانند RDX، PETN و آمونیوم نیترات دارای طیف جذبی در محدوده­­ای از امواج تراهرتز می­باشند که به‌طور وسیع در انواع مواد منفجره مورداستفاده قرارگرفته است و با این روش قابل‌شناسایی و آشکارسازی می­باشند. پارامترهایی نظیر شدت امواج تراهرتز و فاز نسبی میدان­ها و اثرات آن بر روی جذب و پاشندگی، همچنین با اندازه‌گیری زمان سوئیچ زنی سرعت گروه نور کاوشگر، حساسیت و پاسخ سریع آشکارساز به نوسانات امواج تراهرتز موردبررسی قرارگرفته و پاسخ آشکارساز را بین 5 الی 8 پیکوثانیه که زمان بسیار کوتاهی می­باشد تخمین زده­ شده است.

کلیدواژه‌ها


[1] B. Ferguson and X. C. Zhang, “Materials for Terahertz Science and Technology”, Nat. Matter vol. 1, pp. 26–33, 2002.
[2] Masayoshi Tonouchi, "Cutting-edge Terahertz Technology.", Nat. Photonics vol. 1, pp. 97-105, 2007.
[3] C. Baker et. al. “Detection of Concealed Explosives at a Distance Using Terahertz Technology,” Proc. IEEE. vol 95, pp. 1559-1565, 2007.
[4] James TA Carriere, Frank Havermeyer and Randy A. Heyler. "‘THz-Raman Spectroscopy for Explosives, Chemical, and Biological Detection," CBRNE. Sensing XIV. Proc. SPIE 8710 87100M, 2013.
[5] M. Fleischhauer, A. Imamoglu, J. P. Marangos, "Electromagnetically Induced Transparency: Optics in Coherent Media," Rev. Mod. Phys. vol. 77, pp. 633–73, 2005.
[6] S. Harris, J. Field, A. Imamoglu, "Nonlinear Optical Processes Using Electromagnetically Induced Transparency," Phys. Rev. Lett. vol. 64, pp. 1107–10, 1990.
[7] K. Boller, A. Imamolu, S. Harris, "Observation of Electromagnetically Induced Transparency," Phys. Rev. Lett. vol. 66, pp. 2593–6, 1991.
[8] J. Field, K. Hahn, S. Harris, "Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor," Phys. Rev. Lett. vol. 67, pp. 3062–5, 1991.
[9] S. Harris, "Laser without Inversion: Interference of Lifetime-Broadened," Phys. Today, vol. 50, pp. 36-42, 1997.
[10] M. Sahrai, M. Mahmoudi, R. Kheradmand, "The Impact of the Relative Phase on the Transient Optical Properties of a Four-level EIT Medium," Phys. Lett. A. vol. 367, pp. 408–14, 2007.
[11] J-Q. Shen, Z-C. Ruan, S. He, "Influence of the Signal Light on the Transient Optical Properties of a Four-level EIT Medium," Phys. Lett. A, 330, pp. 487–95, 2004.
[12] M. A. Macovei, J. Evers, "Phase Dependence of Collective Fluorescence via Interferences from Incoherent Pumping," Opt. Commun., 240, pp. 379–84, 2004.
[13] J. Javanainen, "Effect of State Superpositions Created by Spontaneous Emission on Laser-Driven Transitions";EPL. 1992, 17, 407–12.
[14] X. Hu, J-P. Zhang, "Coherent Population Trapping via Quantum Interference of Incoherent Pump Processes in Three-level Systems," j. Phys. B: At. Mol. Opt. Phys. vol. 37, pp. 345–56, 2004.
[15] M. Fleischhauer, . H. Keitel, M. O. Scully, C. Su, "Lasing Without Inversion and Enhancement of the Index of Refraction via Interference of Incoherent Pump Processes," Opt. Commun. vol. 87, pp. 109–14, 1992.
[16] D. Bullock, J. Evers, C. H. Keitel, "Modifying Spontaneous Emission via Interferences from Incoherent Pump Fields," Phys. Lett. A 307, pp. 8–12, 2003.
[17] S. Hossein Asadpour, A. Eslami-Majd, "Controlling the Optical Bistability and Transmission Coefficient in a Four-level Atomic Medium, " J. Lumin., 132, pp. 1477–82, 2012.
[18] K. I. Osman, A. Joshi, "Induced Coherence and Optical Bistability in a Four-level System with Incoherent Pumping," Opt. Commun. 293, pp. 86–94, 2013.
[19] M. A. Antón, F. Carreño, O. G. Calderón, S. Melle, "Tunable all-Optical Bistability in a Semiconductor Quantum Dot Damped by a Phase-dependent Reservoir," Opt. Commun. 281, pp. 3301–13, 2008.
[20] A. Chen, "Coherent Manipulation of Spontaneous Emission Spectra in Coupled Semiconductor Quantum Well Structures," Opt. Express. 22, pp. 26991, 2014.
[21] L-G. Si, W-X. Yang, X. Yang, "Ultraslow Temporal Vector Optical Solitons in a Cold Four-level Tripod Atomic System," Opt. Soc. Am. B. 26, 478, 2009.
[22] W-X. Yang, A-X. Chen, R-K. Lee, Y. Wu, "Matched Slow Optical Soliton Pairs via Biexciton Coherence in Duantum Dots," Phys. Rev. A., 84, 013835, 2011.
[23] A. M. C. Dawes, "All-Optical Switching in Rubidium Vapor Science ," Science 308, 672–4, 2005.
[24] S. M. Sadeghi, S. R. Leffler, J. Meyer, "Quantum Interference and Nonlinear Optical Processes in the Conduction Bands of Infrared-Coupled Quantum Wells," Phys. Rev. B. 59, pp. 15388–94, 1999.
[25] H. Su, S. L. Chuang, "Room-Temperature Slow Light with Semiconductor Quantum-Dot Devices," Opt. Lett. 31,pp. 271-273, 2006.
[26] P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C. J. Chang-Hasnain, "Room Temperature Slow Light in a Quantum-Well Waveguide via Coherent Population Oscillation," Opt. Express. 13, pp. 9909, 2005.
[27] P-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S-W. Chang, S-L. Chuang, "Slow Light in Semiconductor Quantum Wells," Opt. Lett., 29, pp. 2291, 2004.
[28] J. Li, R. Yu, X. Hao, A. Zheng, and X. Yang, “ Coherent Laser-Induced Optical Behaviors in Three-Coupled-Quantum Wells and Their Application to Terahertz Signal Detection,” Opt. Commun. 282, pp. 4384–4389, 2009.
[29] S. H. Asadpour, Z. Golsanamlou, and H. R. Soleimani, “Infrared and Terahertz Signal Detection in a Quantum Dot Nanostructure,” Phys. E. 54, pp. 45–52, 2013.
[30] H. C. Liu, C. Y. Song, A. J. Spring Thorpe, and J. C. Cao, “Terahertz Quantum-Well Photodetector,” Appl. Phys. Lett. 84, pp. 4068–4070, 2004.
[31] D. Suzuki, S. Oda, and Y. Kawano, “GaAs/AlGaAs Field-Effect Transistor for Tunable Terahertz Detection and Spectroscopy with Built-in Signal Modulation,” Appl. Phys. Lett. 102, pp. 122102, 2013.
[32] J. Y. Jia, J. H. Gao, M. R. Hao, T. M. Wang, W. Z. Shen, Y. H. Zhang, J. C. Cao, X. G. Guo, and H. Schneider, “Dark Current Mechanism of Terahertz Quantum-well Photodetectors,” J. Appl. Phys. 116, 154501, 2014.
[33] S. H. Asadpour, H. R. Soleimani, "Role of Exciton Spin Relaxation on Optical Bistability and Multistability in a Multiple Quantum Well," Opt. Quant. Electron. 47, pp. 401–12, 2015.
[34] J. Shiri, "Propagation of a Laser Pulse and Electro-Optic Switch in a GaAs/AlGaAs Quadruple-Coupled Quantum Dot Molecule Nanostructure," Laser Phys. 26, 056202, 2016.
[35] Faist, Jerome, et al. "Controlling the Sign of Quantum Interference by Tunnelling from Quantum Wells," Nature. 390, pp. 589-591, 1997.
[36] J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, C. C. Phillips, "ac Stark Splitting and Quantum Interference with Intersubband Transitions in Quantum Wells," Phys. Rev. Lett. 94, 157403, 2005.
[37] M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, C. C. Phillips, "Gain Without Inversion in Semiconductor Nanostructures," Nat. Mater. 5, pp. 175–8, 2006.
[38] A. Imamoğlu, R. J. Ram, "Semiconductor Lasers Without Population Inversion," Opt. Lett. 19, 1744, 1994.
[39] A. Joshi, M. Xiao, "Optical Bistability in a Three-level Semiconductor Quantum-Well System," Appl. Phys. B. vol. 79, pp. 65–9, 2004.
[40] T. M ller, W. Parz, G. Strasser, K. Unterrainer, "Pulse-Induced Quantum Interference of Intersubband Transitions in Coupled Quantum Wells," Appl. Phys. Lett. 84, 64, 2004.
[41] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, W. de Heer, "A Landau Level Spectroscopy of Ultrathin Graphite Layers," Phys. Rev. Lett. 97, 266405, 2006.
[42] Y-H. Ho, Y-H. Chiu, D-H. Lin, C-P. Chang, M-F. Lin, "Magneto-optical Selection Rules in Bilayer Bernal Graphene," ACS Nano. 4, pp. 1465–72, 2010.
[43] D. S. L. Abergel, V. I. Fal’ko, "Optical and Magneto-Optical Far-Infrared Properties of Bilayer Graphene," Phys. Rev. B.
75, 155430, 2007.
[44] X. Yao, A. Belyanin, "Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field," Phys. Rev. Lett. 108, 255503, 2012.
[45] T. Gu, N. Petrone, J.F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, C. W. Wong, "Regenerative Oscillation and Four-wave Mixing in Graphene Optoelectronics," Nat. Photonics 6, pp. 554–9, 2012.
[46] S. A. Mikhailov, "Theory of the Nonlinear Optical Frequency Mixing Effect in Graphene," Physica E Low Dimens Syst Nanostruct., 44, pp. 924–7, 2012.
[47] C. Ding, R. Yu, J. Li, X. Hao, Y. Wu, "Matched Infrared Soliton Pairs in Graphene Under Landau Quantization via Four-wave Mixing," Phys. Rev. A. 90, 043819, 2014.
[48] C. Ding, R. Yu, J. Li, X. Hao, Y. Wu, "Formation and Ultraslow Propagation of Infrared Solitons in Graphene under an External Magnetic Field," J. Appl. Phys. 115, 234301, 2014.
[49] X. He, Y. Huang, X. Yang, L. Zhu, F. Wu, J. Jiang, "Tunable electromagnetically induced transparency based on terahertz graphene metamaterial," RSC Advances. 7(64), pp. 40321-6, 2017.
[50] X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Optics Express. 21(23), pp. 28438-43, 2013.
[51] M. Najafi, "Sensing Properties Investigation of Graphene Oxide Reduced by Various Agents for Detection of DMMP"; ADST. 3. 7 (4), pp. 269-276, 2016.
[52] SHAOPENG LIU, WEN-XING YANG, ZHONGHU ZHU, AND RAY-KUANG LEE, " Effective terahertz signal detection via electromagnetically induced transparency in graphene," JOSA B 33.2, pp. 279-285, 2016.
[53] S. H. Asadpour, H. R. Hamedi, H. R. Soleimani, "Role of Incoherent Pumping Field on Absorption–Dispersion Properties of Probe Pulse in a Graphene Nanostructure under External Magnetic Field," Physica E Low Dimens Syst Nanostruct. 71, pp. 123–9, 2015.
[54] N. E. I. Etteh, P. Harrison, "Carrier Scattering Approach to the Origins of Dark Current in Mid- and Far-Infrared (terahertz) Quantum-Well Intersubband Photodetectors (QWLPs)" IEEE J. Quant. Electron. 37, pp. 672–5, 2001.