[1] B. Ferguson and X. C. Zhang, “Materials for Terahertz Science and Technology”, Nat. Matter vol. 1, pp. 26–33, 2002.
[2] Masayoshi Tonouchi, "Cutting-edge Terahertz Technology.", Nat. Photonics vol. 1, pp. 97-105, 2007.
[3] C. Baker et. al. “Detection of Concealed Explosives at a Distance Using Terahertz Technology,” Proc. IEEE. vol 95, pp. 1559-1565, 2007.
[4] James TA Carriere, Frank Havermeyer and Randy A. Heyler. "‘THz-Raman Spectroscopy for Explosives, Chemical, and Biological Detection," CBRNE. Sensing XIV. Proc. SPIE 8710 87100M, 2013.
[5] M. Fleischhauer, A. Imamoglu, J. P. Marangos, "Electromagnetically Induced Transparency: Optics in Coherent Media," Rev. Mod. Phys. vol. 77, pp. 633–73, 2005.
[6] S. Harris, J. Field, A. Imamoglu, "Nonlinear Optical Processes Using Electromagnetically Induced Transparency," Phys. Rev. Lett. vol. 64, pp. 1107–10, 1990.
[7] K. Boller, A. Imamolu, S. Harris, "Observation of Electromagnetically Induced Transparency," Phys. Rev. Lett. vol. 66, pp. 2593–6, 1991.
[8] J. Field, K. Hahn, S. Harris, "Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor," Phys. Rev. Lett. vol. 67, pp. 3062–5, 1991.
[9] S. Harris, "Laser without Inversion: Interference of Lifetime-Broadened," Phys. Today, vol. 50, pp. 36-42, 1997.
[10] M. Sahrai, M. Mahmoudi, R. Kheradmand, "The Impact of the Relative Phase on the Transient Optical Properties of a Four-level EIT Medium," Phys. Lett. A. vol. 367, pp. 408–14, 2007.
[11] J-Q. Shen, Z-C. Ruan, S. He, "Influence of the Signal Light on the Transient Optical Properties of a Four-level EIT Medium," Phys. Lett. A, 330, pp. 487–95, 2004.
[12] M. A. Macovei, J. Evers, "Phase Dependence of Collective Fluorescence via Interferences from Incoherent Pumping," Opt. Commun., 240, pp. 379–84, 2004.
[13] J. Javanainen, "Effect of State Superpositions Created by Spontaneous Emission on Laser-Driven Transitions";EPL. 1992, 17, 407–12.
[14] X. Hu, J-P. Zhang, "Coherent Population Trapping via Quantum Interference of Incoherent Pump Processes in Three-level Systems," j. Phys. B: At. Mol. Opt. Phys. vol. 37, pp. 345–56, 2004.
[15] M. Fleischhauer, . H. Keitel, M. O. Scully, C. Su, "Lasing Without Inversion and Enhancement of the Index of Refraction via Interference of Incoherent Pump Processes," Opt. Commun. vol. 87, pp. 109–14, 1992.
[16] D. Bullock, J. Evers, C. H. Keitel, "Modifying Spontaneous Emission via Interferences from Incoherent Pump Fields," Phys. Lett. A 307, pp. 8–12, 2003.
[17] S. Hossein Asadpour, A. Eslami-Majd, "Controlling the Optical Bistability and Transmission Coefficient in a Four-level Atomic Medium, " J. Lumin., 132, pp. 1477–82, 2012.
[18] K. I. Osman, A. Joshi, "Induced Coherence and Optical Bistability in a Four-level System with Incoherent Pumping," Opt. Commun. 293, pp. 86–94, 2013.
[19] M. A. Antón, F. Carreño, O. G. Calderón, S. Melle, "Tunable all-Optical Bistability in a Semiconductor Quantum Dot Damped by a Phase-dependent Reservoir," Opt. Commun. 281, pp. 3301–13, 2008.
[20] A. Chen, "Coherent Manipulation of Spontaneous Emission Spectra in Coupled Semiconductor Quantum Well Structures," Opt. Express. 22, pp. 26991, 2014.
[21] L-G. Si, W-X. Yang, X. Yang, "Ultraslow Temporal Vector Optical Solitons in a Cold Four-level Tripod Atomic System," Opt. Soc. Am. B. 26, 478, 2009.
[22] W-X. Yang, A-X. Chen, R-K. Lee, Y. Wu, "Matched Slow Optical Soliton Pairs via Biexciton Coherence in Duantum Dots," Phys. Rev. A., 84, 013835, 2011.
[23] A. M. C. Dawes, "All-Optical Switching in Rubidium Vapor Science ," Science 308, 672–4, 2005.
[24] S. M. Sadeghi, S. R. Leffler, J. Meyer, "Quantum Interference and Nonlinear Optical Processes in the Conduction Bands of Infrared-Coupled Quantum Wells," Phys. Rev. B. 59, pp. 15388–94, 1999.
[25] H. Su, S. L. Chuang, "Room-Temperature Slow Light with Semiconductor Quantum-Dot Devices," Opt. Lett. 31,pp. 271-273, 2006.
[26] P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C. J. Chang-Hasnain, "Room Temperature Slow Light in a Quantum-Well Waveguide via Coherent Population Oscillation," Opt. Express. 13, pp. 9909, 2005.
[27] P-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S-W. Chang, S-L. Chuang, "Slow Light in Semiconductor Quantum Wells," Opt. Lett., 29, pp. 2291, 2004.
[28] J. Li, R. Yu, X. Hao, A. Zheng, and X. Yang, “ Coherent Laser-Induced Optical Behaviors in Three-Coupled-Quantum Wells and Their Application to Terahertz Signal Detection,” Opt. Commun. 282, pp. 4384–4389, 2009.
[29] S. H. Asadpour, Z. Golsanamlou, and H. R. Soleimani, “Infrared and Terahertz Signal Detection in a Quantum Dot Nanostructure,” Phys. E. 54, pp. 45–52, 2013.
[30] H. C. Liu, C. Y. Song, A. J. Spring Thorpe, and J. C. Cao, “Terahertz Quantum-Well Photodetector,” Appl. Phys. Lett. 84, pp. 4068–4070, 2004.
[31] D. Suzuki, S. Oda, and Y. Kawano, “GaAs/AlGaAs Field-Effect Transistor for Tunable Terahertz Detection and Spectroscopy with Built-in Signal Modulation,” Appl. Phys. Lett. 102, pp. 122102, 2013.
[32] J. Y. Jia, J. H. Gao, M. R. Hao, T. M. Wang, W. Z. Shen, Y. H. Zhang, J. C. Cao, X. G. Guo, and H. Schneider, “Dark Current Mechanism of Terahertz Quantum-well Photodetectors,” J. Appl. Phys. 116, 154501, 2014.
[33] S. H. Asadpour, H. R. Soleimani, "Role of Exciton Spin Relaxation on Optical Bistability and Multistability in a Multiple Quantum Well," Opt. Quant. Electron. 47, pp. 401–12, 2015.
[34] J. Shiri, "Propagation of a Laser Pulse and Electro-Optic Switch in a GaAs/AlGaAs Quadruple-Coupled Quantum Dot Molecule Nanostructure," Laser Phys. 26, 056202, 2016.
[35] Faist, Jerome, et al. "Controlling the Sign of Quantum Interference by Tunnelling from Quantum Wells," Nature. 390, pp. 589-591, 1997.
[36] J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, C. C. Phillips, "ac Stark Splitting and Quantum Interference with Intersubband Transitions in Quantum Wells," Phys. Rev. Lett. 94, 157403, 2005.
[37] M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, C. C. Phillips, "Gain Without Inversion in Semiconductor Nanostructures," Nat. Mater. 5, pp. 175–8, 2006.
[38] A. Imamoğlu, R. J. Ram, "Semiconductor Lasers Without Population Inversion," Opt. Lett. 19, 1744, 1994.
[39] A. Joshi, M. Xiao, "Optical Bistability in a Three-level Semiconductor Quantum-Well System," Appl. Phys. B. vol. 79, pp. 65–9, 2004.
[40] T. M ller, W. Parz, G. Strasser, K. Unterrainer, "Pulse-Induced Quantum Interference of Intersubband Transitions in Coupled Quantum Wells," Appl. Phys. Lett. 84, 64, 2004.
[41] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, W. de Heer, "A Landau Level Spectroscopy of Ultrathin Graphite Layers," Phys. Rev. Lett. 97, 266405, 2006.
[42] Y-H. Ho, Y-H. Chiu, D-H. Lin, C-P. Chang, M-F. Lin, "Magneto-optical Selection Rules in Bilayer Bernal Graphene," ACS Nano. 4, pp. 1465–72, 2010.
[43] D. S. L. Abergel, V. I. Fal’ko, "Optical and Magneto-Optical Far-Infrared Properties of Bilayer Graphene," Phys. Rev. B.
75, 155430, 2007.
[44] X. Yao, A. Belyanin, "Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field," Phys. Rev. Lett. 108, 255503, 2012.
[45] T. Gu, N. Petrone, J.F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, C. W. Wong, "Regenerative Oscillation and Four-wave Mixing in Graphene Optoelectronics," Nat. Photonics 6, pp. 554–9, 2012.
[46] S. A. Mikhailov, "Theory of the Nonlinear Optical Frequency Mixing Effect in Graphene," Physica E Low Dimens Syst Nanostruct., 44, pp. 924–7, 2012.
[47] C. Ding, R. Yu, J. Li, X. Hao, Y. Wu, "Matched Infrared Soliton Pairs in Graphene Under Landau Quantization via Four-wave Mixing," Phys. Rev. A. 90, 043819, 2014.
[48] C. Ding, R. Yu, J. Li, X. Hao, Y. Wu, "Formation and Ultraslow Propagation of Infrared Solitons in Graphene under an External Magnetic Field," J. Appl. Phys. 115, 234301, 2014.
[49] X. He, Y. Huang, X. Yang, L. Zhu, F. Wu, J. Jiang, "Tunable electromagnetically induced transparency based on terahertz graphene metamaterial," RSC Advances. 7(64), pp. 40321-6, 2017.
[50] X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Optics Express. 21(23), pp. 28438-43, 2013.
[51] M. Najafi, "Sensing Properties Investigation of Graphene Oxide Reduced by Various Agents for Detection of DMMP"; ADST. 3. 7 (4), pp. 269-276, 2016.
[52] SHAOPENG LIU, WEN-XING YANG, ZHONGHU ZHU, AND RAY-KUANG LEE, " Effective terahertz signal detection via electromagnetically induced transparency in graphene," JOSA B 33.2, pp. 279-285, 2016.
[53] S. H. Asadpour, H. R. Hamedi, H. R. Soleimani, "Role of Incoherent Pumping Field on Absorption–Dispersion Properties of Probe Pulse in a Graphene Nanostructure under External Magnetic Field," Physica E Low Dimens Syst Nanostruct. 71, pp. 123–9, 2015.
[54] N. E. I. Etteh, P. Harrison, "Carrier Scattering Approach to the Origins of Dark Current in Mid- and Far-Infrared (terahertz) Quantum-Well Intersubband Photodetectors (QWLPs)" IEEE J. Quant. Electron. 37, pp. 672–5, 2001.