[1] T. Matsui,
A. Bidiville,
K. Maejima,
H. Sai, T. Koida,
T. Suezaki,
M. Matsumoto,
K. Saito,
I. Yoshida, and
M. Kondo, “High-efficiency amorphous silicon solar cells: Impact of deposition rate on metastability,” Applied Physics Letters, vol. 106, no. 5, pp. 1060-1063, 2015.
[2]
W. Qarony, M. I. Hossain, M. K. Hossain, M. J. Uddin, A. Haque, A. R. Saad, and
Y. H. Tsang, “Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis,” Results in Physics, vol. 7, pp. 4287-4293, 2017.
[3] C. Zhang, D. O. Guney, and J. M. Pearce, “Plasmonic enhancement of amorphous silicon solar photovoltaic cells with hexagonal silver arrays made with nanosphere lithography,” Materials research express, vol. 3, no. 10, 2016.
[4] K. L. Chopra and S. R. Das, “Amorphous Silicon Solar Cells,” Springer US, ISBN: 978-0-306-41141-0, 1983.
[5] M. Ikbal Kabir, S. A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, and N. Amin, “Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10% Efficiency by Design Optimization,” International Journal of Photoenergy, vol. 2012, Article ID 460919, 7 pages, 2012.
[6] C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” Journal of Optics, vol. 19, no. 7, 2017.
[7] Z. Zalevsky and I. Abdulhalim, “Integrated nanophotonic devices,” Elsevier, 2014 ISBN: 978-1-4377-7848-9, 2014.
[8] E. Ghahremanirad, S. Olyaee, and M. Hedayati, “The influence of embedded plasmonic nanostructures on optical absorption of perovskite solar cells,” Photonics, vol. 6, AN. 37, pp. 1-8, 2019.
[9] E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand, P. Nazari, V. Ahmadi, and K. Abedi, “Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network,” Solar Energy, vol. 169, pp. 498-504, 2018.
[10] E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand, V. Ahmadi, and K. Abedi, “Hexagonal array of mesoscopic HTM based perovskite solar cell with embedded plasmonic nanoparticles,” Physica Status Solidi B: Basic Solid State Physics, vol. 255, no. 3, pp. 1-8, 2018.
[11] E. Ghahremanirad, A. Bou, S. Olyaee, and J. Bisquert, “Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model,” Journal of Physical Chemistry Letters, vol. 8, no. 7, pp. 1402-1406, 2017.
[12] S. Olyaee and F. Farhadipour, “Investigation of hybrid Ge QDs/ Si nanowires solar cell with improvement in cell efficiency,” Optica Applicata, vol. 48, no. 4, pp. 633-645, 2018.
[13] E. Sharif-Kazemi, S. Olyaee, and H. Afkham, “Investigation and simulation of the refractive index effect on the plasmonic amorphous silicon solar cells with silver ribbon nanoplate,” Applied Physics, In Press, 2019. (In Persian)
[14] S. Olyaee, F. Farhadipour, and E. Ghahremanirad, “Enhanced photovoltaic properties of InAs/GaAs quantum-dot intermediate-band solar cells by using cylindrical quantum dots,” Digest Journal of Nanomaterials and Biostructures, vol. 13, no. 1, pp. 271-277, 2018.
[15] A. Vora, “Increasing solar energy conversion efficiency in thin film hydrogenated amorphous silicon solar cells with patterned plasmonic silver nano-disk array,” PhD Thesis, Michigan Technological University, 2015.
[16] A. Akimov Yuriy and W. Shing Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics, vol. 6, no. 1, pp. 155-161, 2011.
[17] Wen, Long, Fuhe Sun, and Qin Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Applied Physics Letters, vol. 104, no. 15, 151106, 2014.
[18] P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid‐state plasmonic solar cell via metal nanoparticle self‐assembly,” Advanced Materials, vol. 24, no. 35, pp. 4750-4755, 2012.
[19] J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P. M. Fauchet, “Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both,” Optics Express, vol. 23, no. 3, p. A92, 2015.
[20] G. Le Lay, B. Aufray, C. Léandri, H. Oughaddou, J-P. Biberian, P. De Padova, M. E. Dávila, B. Ealet, and A. Kara, “Physics and chemistry of silicene nano-ribbons,” Applied Surface Science, vol. 256, no. 2, pp. 524-529, 2009.
[21] Warner, G. Marvin, and J. E. Hutchison, “Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds,” Nature Materials, vol. 2, no. 4, p. 272, 2003.
[22] L. D. Yun, J. T. Pham, J. Lawrence, C. Hee Lee, C. Parkos, T. Emrick, and A. J. Crosby, “Macroscopic nanoparticle ribbons and fabrics,” Advanced materials, vol. 25, no. 9, pp. 1248-1253, 2013.
[23] D. Zhang, X. Yang, X. Hong, Y. Liu, and J. Feng, “Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance,” Optical and Quantum Electronics, vol. 47, no. 6, pp. 1421-1427, 2015.
[24] S. I. Bozhevolnyi, “Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford),” publishing 2009.
[25] H. W. H. Lee, “Plasmonic Photonic Crystal Fiber,” PhD Thesis, Max Planck Institue, 2012.
[26] A. A. Maradudin, “Introduction: plasmonics and its building blocks,” Handbook of Surface Science, vol. 4, North-Holland, pp. 1-36, 2014.
[27] G. Orellana and M. C. Moreno-Bondi, “Frontiers in chemical sensors: novel principles and techniques,” Springer Science & Business Media, vol. 3, 2006.