تحلیل و شبیه سازی تاثیر ابعاد نانوذره ریبونی نقره و تغییرات ضریب شکست محیط بر روی بازدهی سلول خورشیدی سیلیکونی آمورف پلاسمونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت دبیر شهید رجائی

2 عضو هیئت علمی دانشگاه تربیت دبیر شهید رجایی، آزمایشگاه تحقیقاتی نانوفوتونیک و اپتوالکترونیک

چکیده

در این مقاله به بررسی و تحلیل رفتار سلول خورشیدی سیلیکونی آمورف پلاسمونی در مقابل تغییرات ابعاد نانوذره ریبونی نقره و نیز تاثیر تغییرات ضریب شکست محیط بر آن پرداخته می­شود و پارامترهای مهمی مانند بازدهی شبیه­سازی می­شود. برای این منظور از روش تفاضل محدود حوزه زمان استفاده شده است. رفتار سلول خورشیدی در حالت با و بدون اعمال نانوذرات بررسی شده است. همچنین با تغییر ابعاد نانوذره نقره، بهترین حالت برای دستیابی به بیشترین بازدهی به­دست آمده است. برای بررسی تاثیر ضریب شکست محیط بر عملکرد سلول خورشیدی پلاسمونی با تغییر ضریب شکست محیط از 1 (هوا) تا 6/1، نمایه تزویج نور به نانوذره ریبون و ضریب جذب سیلیکون به­دست آورده شده است. نتایج نشان می­دهد که به­ازای ضریب شکست 2/1، بازدهی 45/12 به­دست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and Simulation of Influence of The Silver Ribbon Nanoparticle’s Dimensions and Refractive Index on The Efficiency of Plasmonic Amorphous Silicon Solar Cell

نویسندگان [English]

  • Hamed Afkham 1
  • Saeed Olyaee 2
  • Esmaeel Sharif Kazemi 1
1 Shahid Rajaee Teacher Training University
2 Shahid Rajaee Teacher Training University
چکیده [English]

In this paper, the effects of silver ribbon nanoparticle dimensions and the refractive index of the environment on silicon solar cell performance are investigated and analyzed. By changing the dimensions of nanoparticles and altering the refractive index, important parameters such as efficiency are simulated with finite-difference time-domain (FDTD) method. Also, the solar cell performance is investigated with and without nanoparticles. By changing the nanoparticle dimensions, the optimum case to achieve maximum efficiency is obtained. The influence of changes in refractive index of the environment from 1 (air) to 1.6 on the performance of the solar cells and the coupling profile are also studied. The simulation results reveal that the efficiency of 12.45 is obtained by selecting a refractive index of 1.2.    

کلیدواژه‌ها [English]

  • Efficiency
  • Solar Cell
  • Amorphous Silicon
  • Silver Ribbon Nanoparticle
[1]     T. Matsui, A. Bidiville, K. Maejima, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, and M. Kondo, “High-efficiency amorphous silicon solar cells: Impact of deposition rate on metastability,” Applied Physics Letters, vol. 106, no. 5, pp. 1060-1063, 2015.
 [2]     W. Qarony, M.  I. Hossain, M. K. Hossain, M. J. Uddin, A. Haque, A. R. Saad, and Y. H. Tsang,  “Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis,” Results in Physics, vol. 7, pp.      4287-4293, 2017.
 [3]     C. Zhang, D. O. Guney, and J. M. Pearce, “Plasmonic enhancement of amorphous silicon solar photovoltaic cells with hexagonal silver arrays made with nanosphere lithography,” Materials research express, vol. 3, no. 10, 2016.
 [4]     K. L. Chopra and S. R. Das, “Amorphous Silicon Solar Cells,” Springer US, ISBN: 978-0-306-41141-0, 1983.
 [5]     M. Ikbal Kabir, S. A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, and N. Amin, “Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10% Efficiency by Design Optimization,” International Journal of Photoenergy, vol. 2012, Article ID 460919, 7 pages, 2012.
 [6]     C. Zhang, J. Gwamuri, S. Cvetanovic, M. Sadatgol, D. Guney, and J. M. Pearce, “Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography,” Journal of Optics, vol. 19, no. 7, 2017.
 [7]     Z. Zalevsky and I. Abdulhalim, “Integrated nanophotonic devices,” Elsevier, 2014 ISBN: 978-1-4377-7848-9, 2014.
 [8]     E. Ghahremanirad, S. Olyaee, and M. Hedayati, “The influence of embedded plasmonic nanostructures on optical absorption of perovskite solar cells,” Photonics, vol. 6, AN. 37, pp. 1-8, 2019.
 [9]     E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand, P. Nazari, V. Ahmadi, and K. Abedi, “Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network,” Solar Energy, vol. 169, pp. 498-504, 2018.
 [10]  E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand, V. Ahmadi, and K. Abedi, “Hexagonal array of mesoscopic HTM based perovskite solar cell with embedded plasmonic nanoparticles,” Physica Status Solidi B: Basic Solid State Physics, vol. 255, no. 3, pp. 1-8, 2018.
 [11]  E. Ghahremanirad, A. Bou, S. Olyaee, and J. Bisquert, “Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model,” Journal of Physical Chemistry Letters, vol. 8, no. 7, pp. 1402-1406, 2017.
 [12]  S. Olyaee and F. Farhadipour, “Investigation of hybrid Ge QDs/ Si nanowires solar cell with improvement in cell efficiency,” Optica Applicata, vol. 48, no. 4, pp. 633-645, 2018.
 [13]  E. Sharif-Kazemi, S. Olyaee, and H. Afkham, “Investigation and simulation of the refractive index effect on the plasmonic amorphous silicon solar cells with silver ribbon nanoplate,” Applied Physics, In Press, 2019. (In Persian)
 [14]  S. Olyaee, F. Farhadipour, and E. Ghahremanirad, “Enhanced photovoltaic properties of InAs/GaAs   quantum-‎dot intermediate-band solar cells by using cylindrical ‎quantum dots,” Digest Journal of Nanomaterials and Biostructures, vol. 13, no. 1, pp. 271-277, 2018.
 [15]  A. Vora, “Increasing solar energy conversion efficiency in thin film hydrogenated amorphous silicon solar cells with patterned plasmonic silver nano-disk array,” PhD Thesis, Michigan Technological University, 2015.
 [16]  A. Akimov Yuriy and W. Shing Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics, vol. 6, no. 1, pp.        155-161, 2011.
 [17]  Wen, Long, Fuhe Sun, and Qin Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Applied Physics Letters, vol. 104, no. 15, 151106, 2014.
 [18]  P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid‐state plasmonic solar cell via metal nanoparticle self‐assembly,” Advanced Materials, vol. 24, no. 35, pp. 4750-4755, 2012.
 [19]  J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P. M. Fauchet, “Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both,” Optics Express, vol. 23, no. 3, p. A92, 2015.
 [20]  G. Le Lay, B. Aufray, C. Léandri, H. Oughaddou, J-P. Biberian, P. De Padova, M. E. Dávila, B. Ealet, and A. Kara, “Physics and chemistry of silicene    nano-ribbons,” Applied Surface Science, vol. 256, no. 2, pp. 524-529, 2009.
 [21]  Warner, G. Marvin, and J. E. Hutchison, “Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds,” Nature Materials, vol. 2, no. 4, p. 272, 2003.
 [22]  L. D. Yun, J. T. Pham, J. Lawrence, C. Hee Lee, C. Parkos, T. Emrick, and A. J. Crosby, “Macroscopic nanoparticle ribbons and fabrics,” Advanced materials, vol. 25, no. 9, pp. 1248-1253, 2013.
 [23]  D. Zhang, X. Yang, X. Hong, Y. Liu, and J. Feng, “Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance,” Optical and Quantum Electronics, vol. 47, no. 6, pp. 1421-1427, 2015.
 [24]  S. I. Bozhevolnyi, “Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford),” publishing 2009.
 [25]  H. W. H. Lee, “Plasmonic Photonic Crystal Fiber,” PhD Thesis, Max Planck Institue, 2012.
 [26]  A. A. Maradudin, “Introduction: plasmonics and its building blocks,” Handbook of Surface Science, vol. 4, North-Holland, pp. 1-36, 2014.  ‏
 [27]  G. Orellana and M. C. Moreno-Bondi, “Frontiers in chemical sensors: novel principles and techniques,” Springer Science & Business Media, vol. 3, 2006. ‏