[1] Xiuyuan Li, Yulong Zhao, Tengjiang Hu, Wenju Xu, You Zhao, Yingwei Bai, and Wei Ren, “Design of a large displacement thermal actuator with a cascaded V‑beam amplification for MEMS safety‑and‑arming devices,” Microsyst. Technol., vol. 21, no. 11, pp. 2367-74, 2015.
[2] Tengjiang Hu, Yulong Zhao, You Zhao, and Wei Ren, “Integration design of a MEMS based fuze,” Sensors and Actuators A, vol. 268, pp. 193-200, 2017.
[3] Sang-Hee Yoon, Jong-Soo Oh, Young-Ho Lee, and Seok-Woo Lee. "Miniaturized Inertia Generators as Power Supplies for Small-Caliber Fuzes." IEEE Transactions on Magnetics, vol. 41, no. 7, pp. 2300-2306, 2005.
[4] Wei Zhang, Yinlin Li, Zhonghua Huang, and Chao Ma, “Fog backscattering interference suppression algorithm for FMCW laser fuze based on normalized frequency spectrum threshold,” Optik, vol. 131, pp. 188–193, 2017.
[5] Fengjie Wang, Huimin Chen, Chao Ma, and Lixin Xu, “Construction of backscattering echo caused by cloud in laser fuze,” Optik, vol. 171, pp. 153-160, 2018.
[6] Yujuan Tang, Zhong Yang, Xinjie Wang, and Jiong Wang, “Research on the piezoelectric ultrasonic actuator applied to smart fuze safety system,” International Journal of Applied Electromagnetics and Mechanics,vol. 53, pp. 303–313, 2017.
[7] Li Hong, He Zhang, and Hao-jie Li, “Design of a Fuze Power Supply to Small Caliber Time Fuze,” Applied Mechanics and Materials, vol. 433-735, pp. 197-200, 2013.
[8] Standard, “Fuze and Fuze Components, Environmental and Performance Tests,” Department of Defense Test Method, MIL-STD-331C, USA, 2005.
[9] Sang-Hee Yoon, Joong-Tak Son, and Jong-Soo Oh, “Miniaturized g- and spin-activated Pb/HBF4/PbO2 reserve batteries as power sources for electronic fuzes,” Journal of Power Sources, vol. 162, no. 2, pp. 1421–1430, 2006.
[10] Jaewan Kim, Jinwoo Oh, and Hoseong Lee, “Review on Battery Thermal Management System for Electric Vehicles,” Applied Thermal Engineering, vol. 149, pp. 192 –212, 2019.
[11] Jiabin Yan, Xiaoping Lia Deyang Yan, and Youguo Chen, “Review of Micro Thermoelectric Generator,” Journal of Microelectromechanical systems I, vol. 27, no. 1, pp. 1-18, 2018.
[12] P. T. Moseley, D. A. J. Rand, A. Davidson, and B. Monahov, “Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress,” Journal of Energy Storage, vol. 27, pp. 272-90, 2018.
[13] G. J. May, A. Davidson, and B. Monahov, “Lead batteries for utility energy storage: A review,” Journal of Energy Storage, vol. 15, pp. 145-57, 2018.
[14] V. Janicek and M. Husak, “Designing the 3D electrostatic microgenerator,” Journal of Electrostatics, vol. 17, no. 3, pp. 214-219, 2013.
[15] Abu Raihan Mohammad Siddique, Shohel Mahmud, and Bill Van Heyst, “A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms,” Energy Conversion and Management, vol. 106, pp. 728–47, 2015.
[16] S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators –A review,” Applied Energy, vol. 88, no. 1, pp. 1–16, 2011.
[17] A. Mishra, P. M. Tripathi, and K. Chatterjee, “A review of harmonic elimination techniques in grid connected doubly fed induction generator based wind energy system,” Renewable and Sustainable Energy Reviews, vol. 89, pp. 1-15, 2018.
[18] D. P. Arnold, “Review of Microscale Magnetic Power Generation,” IEEE Transactions on Magnetics, vol. 43, no. 11, pp. 3940-51, 2007.
[19] C. Buzzell, “Electrical setback generator,” United states of America, Patent 3,981,245, September 21, 1976.
[20] Yue Fu, Wen-zhong Lou and Long-fei Zhang, “The simulation for a new anomagnetic setback generator,” J. Nanoengineering and Nanosystems, vol. 225, pp. 177–180, 2012.
[21] Qiao Lu, Liming Li, and Guofu Yin, “Optimization Design of Setback Generator For Initiating Explosive Devices,” MATEC Web of Conferences, pp. 1-5, 2017.
[22] C. Pompermaier, K. Flavio Jorge Haddad, A. Zambonetti, M. V. Ferreira da Luz, and Ion Boldea, “Small Linear PM Oscillatory Motor: Magnetic Circuit Modeling Corrected by Axisymmetric 2-D FEM and Experimental Characterization,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1389-1396, 2011.
[23] Jiabin Wang, Weiya Wang, Geraint W. Jewell, and David Howe, “A Low-Power, Linear, Permanent-Magnet Generator/Energy Storage System,” IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp. 640-648, 2002.