[1] S. K. Marvin and M.-S. Alouini, “Digital communication over fading channels,” John Wiley & Sons, vol. 95, 2005.
[2] G. L. Turin, W. S. Jewell, and T. L. Johnston, “Simulation of urban vehicle-monitoring systems,” IEEE Transactions on Vehicular Technology, vol. 21, no. 1, pp. 9-16, 1972.
[3] H. Suzuki, “A statistical model for urban radio propogation,” IEEE Transactions on communications, vol. 25, no. 7, pp. 673-680, 1977.
[4] R. Ganesh and K. Pahlavan, “On the modeling of fading multipath indoor radio channels,” In Global Telecommunications Conference and Exhibition' Communications Technology for the 1990s and Beyond'(GLOBECOM), 1989 IEEE, pp. 1346-1350, 1989.
[5] W. Wang, J. Y. Xiong, and Z. L. Zhu, “A new NLOS error mitigation algorithm in location estimation,” IEEE Trans. Veh. Technol., vol. 54, no. 6, pp. 2048–2053, Nov. 2005.
[6] S. Al-Ahmadi and H. Yanikomeroglu, ‘‘On the approximation of the generalized-K distribution by a gamma distribution for modeling composite, fading channels,” IEEE Trans. Wirel. Commun., vol. 9, no. 2, pp. 706–713, 2010.
[7] S. Suljović, et al., “Level crossing rate of SC receiver over gamma shadowed Weibull multipath fading channel,” Tehnički vjesnik 23.6, pp. 1579-1584, 2016.
[8] P. M. Shankar, “A general statistical model for ultrasonic backscattering from tissues,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 3, pp. 727– 736, 2000.
[9] T. Eltoft, “The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics,” IEEE Transactions on Image Processing 14.11, pp. 1722-1735, 2005.
[10] J. Malhotra, A. K. Sharma, and R. S. Kaler, “On the performance analysis of wireless receiver using generalized-gamma fading model,” annals of telecommunications-annales des télécommunications 64.1-2, pp. 147-153, 2009.
[11] P. Beckmann, “Rayleigh distribution and its generalizations,” Radio Science Journal of Research NBS/USNC-URSI, vol. 66D, no. 3, pp. 231–240, 1964.
[12] E. Jakeman, “Speckle statistics with a small number of scatterers,” Opt. Eng., vol. 23, no. 4, pp. 453–461, 1984.
[13] E. Jakeman and P. N. Pusey, “A model for a non-Rayleigh sea echo,” IEEE Trans. Antennas Propagat., vol. AP-24, pp. 806-814, Nov. 1976.
[14] G. V. Weinberg and V. G. Glenny, “Optimal Rayleigh Approximation of the K-Distribution via the Kullback–Leibler Divergence,” in IEEE Signal Processing Letters, vol. 23, no. 8, pp. 1067-1070, Aug. 2016.
[15] G. V. Weinberg, “Error bounds on the Rayleigh approximation of the K-distribution,” IET Signal Processing 10, no. 3, pp. 284-290, 2016.
[16] A. Abdi and M. Kaveh, “Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions,” IEEE Communications Letters, vol. 4, no. 4, pp. 122-124, 2000.
[17] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization based on second-order statistics: A time domain approach,” IEEE Transactions on information Theory, vol. 40, no. 2, pp. 340-349, 1994.
[18] S. K. Yoo, et al., “The Fisher–Snedecor $\mathcal {F} $ Distribution: A Simple and Accurate Composite Fading Model,” IEEE Communications Letters, vol. 21, no. 7, pp. 1661-1664, 2017.
[19] D. Agostino and B. Ralph, “Goodness-of-fit-techniques,” vol. 68, CRC press, 1986.
[20] G. ETSI, 05.02, Digital cellular telecommunications system (Phase 2), Multiplexing and multiple access on the radio path, Sep. 1994.