انحراف مدل محوشدگی در کانال‌های دید غیرمستقیم در بازتابش محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه جامع امام حسین(ع)

2 استاد، دانشگاه تربیت مدرس

3 دانشگاه صنعتی امیرکبیر

چکیده

برای توصیف ویژگی‌های کلاتر در رادار و سیگنال‌های برگشتی درگیرنده های مخابراتی، از مدل‌های آماری استفاده می‌شود. توزیع ریلی ساده‌ترین مدل محوشدگی در کانال‌های دید غیرمستقیم است که دقت آن در رادارهای با دقت بالا و گیرنده‌های مخابراتی در فاصله زیاد، کم است. هم‌اکنون مدل‌هایی با دقت بالاتر مانند ناکاگامی نوع m و مدل‌های ترکیبی K و GK برای مدل کردن محوشدگی استفاده می‌شود. گرچه دقت این مدل‌های غیر ریلی در کانال‌های دید غیرمستقیم مخابراتی نسبت به ریلی بهتر است، اما دقت همین مدل‌ها در زمانی که زاویه تابش در فرستنده و  بازتابش درگیرنده متفاوت باشند، کاهش می‌یابد، در این مقاله با تحلیل و ارزیابی و استفاده از داده‌های عملی برای محوشدگی کانال های مخابراتی توزیع K وF پیشنهاد می گردد، گرچه مدل K  قبلاً برای توصیف ویژگی‌های کلاتر رادار معرفی شده بود.

کلیدواژه‌ها


عنوان مقاله [English]

Fading Model Deviation in the NLOS Channel at Limited Reflection

نویسندگان [English]

  • Zabihollah Hasanshahi 1
  • Paeez Azmi 2
  • Mohammad Khaje zade 3
1 Imam Hossein Comprehensive University
2 Tarbiat Modares University
3 Amirkabir University of Technology
چکیده [English]

Statistical models are employed to represent both clutter characteristics and reflecting signals in the radar and telecommunication receivers. Rayleigh distribution is the simplest fading model in NLOS channels whose accuracy is lower than required in high-resolution radars and distant telecommunication receivers. At present, high accuracy models such as the m-type Nakagami and hybrid K and GK distributions are utilized in order to model fading. Although in NLOS channels, Non-Rayleigh models have better precision than Rayleigh models, the accuracy of these models decreases when the radiation angle in the transmitter and the reflection angle in the receiver are different. Whilst the K model has previously been introduced to describe the clutter properties of the radar, in this paper both K and F distribution functions are analytically introduced and deployed to model the fading using practical data.  

کلیدواژه‌ها [English]

  • NLOS Channel
  • Non Rayliegh Fading
  • Limited Reflection
[1]     S. K. Marvin and M.-S. Alouini, “Digital communication over fading channels,” John Wiley & Sons, vol. 95, 2005.
[2]     G. L. Turin, W. S. Jewell, and T. L. Johnston, “Simulation of urban vehicle-monitoring systems,” IEEE Transactions on Vehicular Technology, vol. 21, no. 1, pp. 9-16, 1972.
[3]     H. Suzuki, “A statistical model for urban radio propogation,” IEEE Transactions on communications, vol. 25, no. 7, pp. 673-680, 1977.
[4]   R. Ganesh and K. Pahlavan, “On the modeling of fading multipath indoor radio channels,” In Global Telecommunications Conference and Exhibition' Communications Technology for the 1990s and Beyond'(GLOBECOM), 1989 IEEE, pp. 1346-1350, 1989.
[5]     W. Wang, J. Y. Xiong, and Z. L. Zhu, “A new NLOS error mitigation algorithm in location estimation,” IEEE Trans. Veh. Technol., vol. 54, no. 6, pp. 2048–2053, Nov. 2005.
[6]     S. Al-Ahmadi and H. Yanikomeroglu, ‘‘On the approximation of the generalized-K distribution by a gamma distribution for modeling composite, fading channels,” IEEE Trans. Wirel. Commun., vol. 9, no. 2, pp. 706–713, 2010.
[7]     S. Suljović, et al., “Level crossing rate of SC receiver over gamma shadowed Weibull multipath fading channel,” Tehnički vjesnik 23.6, pp. 1579-1584, 2016.
 
[8]     P. M. Shankar, “A general statistical model for ultrasonic backscattering from tissues,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 3, pp. 727– 736, 2000.
[9]     T. Eltoft, “The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics,” IEEE Transactions on Image Processing 14.11, pp. 1722-1735, 2005.
[10]  J. Malhotra, A. K. Sharma, and R. S. Kaler, “On the performance analysis of wireless receiver using    generalized-gamma fading model,” annals of telecommunications-annales des télécommunications 64.1-2, pp. 147-153, 2009.
[11]  P. Beckmann, “Rayleigh distribution and its generalizations,” Radio Science Journal of Research NBS/USNC-URSI, vol. 66D, no. 3, pp. 231–240, 1964.
[12]  E. Jakeman, “Speckle statistics with a small number of scatterers,” Opt. Eng., vol. 23, no. 4, pp. 453–461, 1984.
[13]  E. Jakeman and P. N. Pusey, “A model for a non-Rayleigh sea echo,” IEEE Trans. Antennas Propagat., vol. AP-24, pp. 806-814, Nov. 1976.
[14]  G. V. Weinberg and V. G. Glenny, “Optimal Rayleigh Approximation of the K-Distribution via the Kullback–Leibler Divergence,” in IEEE Signal Processing Letters, vol. 23, no. 8, pp. 1067-1070, Aug. 2016.
[15]  G. V. Weinberg, “Error bounds on the Rayleigh approximation of the K-distribution,” IET Signal Processing 10, no. 3, pp. 284-290, 2016.
[16]   A. Abdi and M. Kaveh, “Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions,” IEEE Communications Letters, vol. 4, no. 4,  pp. 122-124, 2000.
[17]  L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization based on second-order statistics: A time domain approach,” IEEE Transactions on information Theory, vol. 40, no. 2, pp. 340-349, 1994.
[18]  S. K. Yoo, et al., “The Fisher–Snedecor $\mathcal {F} $ Distribution: A Simple and Accurate Composite Fading Model,” IEEE Communications Letters, vol. 21, no. 7, pp. 1661-1664, 2017.
[19]  D. Agostino and B. Ralph, “Goodness-of-fit-techniques,” vol. 68, CRC press, 1986.
[20]   G. ETSI, 05.02, Digital cellular telecommunications system (Phase 2), Multiplexing and multiple access on the radio path, Sep. 1994.