فراماده جاذب جدید پهن باند، سبک‌وزن با ضخامت 4/1 میلی‌متر به‌منظور کاهش سطح مقطع راداری اجسام

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه جامع امام حسین (ع)دانشکده علوم پایهگروه فوتونیک

2 فارغ التحصیل دانشگاه جامع امام حسین (ع)، گروه فوتونیک

چکیده

در این مقاله ساختاری جاذب مبتنی بر فرامواد به منظور کاهش سطح مقطع راداری اجسام معرفی گردیده است که آرایه دوره‌ای آن از هندسه جدید و نسبتاً ساده‌ای برخوردار است و ضخامت آن 1/4 میلی‌متر است. سازه مورد نظر توسط روش تطبیق امپدانس مورد تحلیل قرار می‌گیرد. نتایج شبیه‌سازی انجام شده با استفاده از نرم‌افزار CST نشان می‌دهد که این ساختار در بازه فرکانسی 8/1 الی 10 گیگاهرتز در قطبش‌های TE و TM امواج فرودی دارای جذب مناسبی است که باعث می‌شود سطح مقطع راداری حداقل 2 و حداکثر 80 دسی‌بل کاهش یابد. سازه جاذب پیشنهادی، ضخامت، اندازه و وزن مناسبی را دارا است که استفاده از آن باعث بهبود در کاهش سطح مقطع راداری اجسام خواهد شد و بدنه اجسام را رادار گریز خواهد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Light and Broadband Metamaterial Absorber with 1.4 mm Thicknes for Reducing Radar Cross Section of Objects

نویسندگان [English]

  • abdollah malakzadeh 1
  • Majid Rezayatfam 2
1 Faculty in Physics group. Basic sciences Dept.
2 graduated student of Dept. Physics
چکیده [English]

We have introduced an absorber structure based on metamaterials to reduce radar cross section of objects. The absorber is a periodic array with new and relatively simple design which has a thickness of 1.4 mm. The desired structure is analysed by impedance matching method. Simulation results using CST software show that this structure has a good absorption in the frequency range of 8.1 to 10 GHz in TE and TM polarizations of the Incident waves; which reduces the radar cross-section from a minimum value of 2 to a maximum value of 80 dB. The proposed absorber structure has the appropriate thickness, size and weight that using of it will improve radar cross-section reduction of the objects and will make the body of the objects stealth.

کلیدواژه‌ها [English]

  • Metamaterial
  • Absorber
  • Radar cross section
  • stealth
   [1]      Ulaby, F.T., R.K. Moore, and A.K. Fung, " Microwave remote sensing: Active and passive", Reading, Massachusetts: Addison-Wesley, 1981.##
   [2]      Burkholder, R., L. Gupta, and J. Johnson, "Comparison of monostatic and bistatic radar images", IEEE Antennas and Propagation Magazine, vol. 45,  3, pp. 41-50, 2003.##
   [3]      Skolnik, M.I., Radar handbook (2nd ed.). Mc Graw Hill, ed. n. ed.), New York, USA, 1990.##
   [4]      Jenn, D.C., "Radar and laser cross section engineering", AIAA Education Series, Washington, DC, USA, 1995.##
   [5]      Jeff Scott, R.C.S., "Reference for Aviation, Space, Design", http://www.aerospaceweb.org.##
   [6]      Hema Singh, R.M.J., "Active Radar Cross Section Reduction, Theory and Applicationss", Cambridge University Press, 1st Edition, 2015.##
   [7]      Piccirillo, A.C., "The Have Blue Technology Demonstrator and Radar Cross Section Reduction", SAE Technical Paper 965538, pp. 1-15, 1996.##
   [8]      Ahmad, H., et al., "Stealth technology: Methods and composite materials, a review", Polymer Composites, pp. 1-16, 2019.##
   [9]      Osman, I.A. and A.A.J. Alzebaidi, "Active cancellation system for radar cross section reduction", International Journal of Education and Research, vol. 1, no. 7 , pp. 1-6 , 2013.##
[10]      Singh, H., H.S. Rawat, and R. George, "Design of Radar Absorbing Structure, in Fundamentals of EM Design of Radar Absorbing Structures (RAS)", Springer, 2018.##
[11]      Fang, X., C. Zhao, and H. Bao, "Design and analysis of Salisbury screens and Jaumann absorbers for solar radiation absorption", Frontiers in Energy, vol. 12, pp. 158-168, 2018.##
[12]      D. Zarifi, A.F., M. Soleymani, "Extraction of Electromagnetic Parameters of Metamaterials Based on the State Space Approach" Applied Electromagnetics (In Persian),. Vol. 2. No. 2, pp. 1-9, 2015.##
[13]      Liu, Y. and X. Zhang, "Metamaterials: a new frontier of science and technology", Chemical Society Reviews, vol. 40. no. 5, pp. 2494-2507, 2011.##
[14]      Landy, N.I., et al., "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, no. 20, pp. 207402-5, 2008.##
[15]      Wen, Q.-Y., et al., "Transmission line model and fields analysis of metamaterial absorber in the terahertz band", Opt. Exp., vol. 17, no. 22, pp. 20256-20265. 2009##
[16]      Chen, H.-T., "Interference theory of metamaterial perfect absorbers", Opt. Exp., vol. 20, no. 7, pp. 7165-7172, 2012.##
[17]      Sabah, C., et al., "Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies", Radio Science, 2014. 49(4): p. 306-314.##
[18]      Lvovsky, A.I., "Fresnel equations, in Encyclopedia of Optical and Photonic Engineering", Five Volume, CRC Press, 2015.##
[19]      Watts, C.M., X. Liu, and W.J. Padilla, "Metamaterial electromagnetic wave absorbers", Advanced materials, vol. 24, no. 23, pp. 98-120, 2012.##
[20]      Sun, L., et al., "Broadband metamaterial absorber based on coupling resistive frequency selective surface", Opt. Exp., vol. 20, no. 4, pp. 4675-4680, 2012.##
[21]      Tedeschi, N. "Brief introduction to metamaterials", https://www.docenti.unina.it/webdocenti-be/allegati/materi ale-didattico/509220, 2014.##
[22]      Christophe Caloz, T.I., "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach", John Wily, 2005.##
[23]      Pendry, J.B., et al. , "Extremely low frequency plasmons in metallic mesostructures", Phys. Rev. Lett., vol. 76, no. 25, pp. 4773, 1996.##
[24]      Pendry, J.B., et al., "Low frequency plasmons in thin-wire structures", Journal of Physics: Condensed Matter, vol. 10, no. 22, pp. 4785, 1998.##
[25]      Pendry, J.B., et al., "Magnetism from conductors and enhanced nonlinear phenomena", IEEE transactions on microwave theory and techniques, vol. 47, no. 11, pp. 2075-208, 1999.##
[26]      Advanced Elctromagnetism; Electromagnetic Waves in Dielectric Medium, University of Liverpool.##
[27]      Yang, H., et al., "Low RCS metamaterial absorber and extending bandwidth based on electromagnetic resonances", Progress In Electromagnetics Research, vol. 33, pp. 31-44. 2013.##