تابش لیزری طول‌موج کوتاه با استفاده از نانوساختار هسته/پوسته نقره/سیلیسیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی علوم پایه دانشگاه ولی عصر رفسنجان شهر رفسنجان

2 گروه آموزشی فیزیک-دانشکده علوم-دانشگاه ولی عصر-رفسنجان-کرمان

چکیده

در این پژوهش، به‌طور عددی گسیل فوتوالکترون‌ها در گازهای هیدروژنی با استفاده از میدان‌های نزدیک پراکنده شده، بررسی می‌شود. میدان‌های نزدیک توسط نانوکره‌ فلزی تک لایه و هم‌چنین نانوکره‌ فلزی هسته/پوسته‌ای که تحت تابش میدان تخت قطبیده قرار دارند ایجاد می‌شوند. محاسبات این میدان‌ها به‌صورت تحلیلی با استفاده از تئوری مای که سال‌های بسیاری یک ابزار قدرتمند برای فهم پراکندگی تابش الکترومغناطیسی بوده است انجام می‌شود. نتایج نشان می‌دهد که حضور یک‌لایه‌ پوششی عایق سیلیسیم دور نانو کره فلزی و ایجاد نانوساختار هسته/پوسته، نه تنها می‌توان بر مشکل محدود بودن شدت باریکه‌ لیزری فرودی قابل تحمل غلبه کرد بلکه باعث تقویت بیشتر میدان لیزری نسبت به تک کره فلزی می‌شود. وابستگی فضایی میدان‌های نزدیک و هم‌چنین تقویت میدان‌های نزدیک در اطراف قطب‌های سطح نانوکره، پتانسیل زیادی برای تولید فوتون‌های طول‌موج کوتاه به‌وسیله تابش مستقیم نوسانگرهای لیزری فمتوثانیه‌ای متداول را فراهم می‌کند. طیف‌های هماهنگ تحت تأثیر طول‌موج باریکه فرودی، شعاع ذرات، ضخامت پوسته و فاصله‌ بین اتم هیدروژن و نانوذره می‌باشد. چنین منابع لیزری می‌تواند برای مشاهدات زمان-واقعی و کنترل در محدوده‌ زمانی متناظر با دینامیک الکترونی، عکس‌برداری و طیف‌سنجی فوق‌سریع به‌کار می‌رود.

کلیدواژه‌ها


[1]     G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, S. R. Kirchner, H. J. Kluge, and G. W. Drake, “Nuclear Charge Radii of L i 8, 9 Determined by Laser Spectroscopy,” Phys. Rev. Lett., vol. 93 pp. 113002-113005, 2004.##
[2]     R. Sanchez, W. Nörtershäuser, G. Ewald, D. Albers, J. Behr, P. Bricault, and G. W. Drake, “Nuclear Charge Radii of Li 9, 11: The Influence of Halo Neutrons,” Phys. Rev. Lett., vol. 96 pp. 033002-033006, 2006.‏##
[3]      A. Gumberidze, T. Stöhlker, H. F. Beyer, F. Bosch, A. Bräuning-Demian, S. Hagmann, and W. Quint, “X-ray Spectroscopy of Highly-Charged ‏Heavy Ions at FAIR,” Nucl. Instrum. Methods Phys. Res. B., vol. 267 pp. 248-250, 2009.‏##
[4]     M. Mohebbi, “Controlling the Ionization and Recombination Rates of an Electron in Preexcited Ions to Generate an Intense Isolated Sub-4-as Pulse in a Multicycle Regime,” Phys. Rev. A, vol. 91 pp. 023835-023846, 2015.##
[5]     H. Ebadian, M. Mohebbi, “Plasmonic Nanostructure Assisted HHG in NIR Spectrum and Thermal Analysis,” J. Phys. D: Appl. Phys., vol. 51 pp. 075307-075315, 2018.##
[6]     A. Scrinzi, M. Y. Ivanov, R. Kienberger, D. M. Villeneuve, “Attosecond Physics,” J. Phys. B, vol. 39 pp. 1-42, 2006.##
[7]     T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme Ultraviolet High-harmonic Spectroscopy of Solids,” Nature, vol. 521 pp. 498–502, 2015.##
[8]     R. Silva,  I. V.Blinov, A. N. Rubtsov, O. Smirnova, and M. Ivanov, “High-harmonic Spectroscopy of Ultrafast Many-body Dynamics in Strongly Correlated Systems,” Nat. Photon., vol. 12 pp. 266–270, 2018.##
[9]     E. Malm, H. Wikmark, B. Pfau, P. Villanueva-Perez, P. Rudawski, J. Peschel, and A. L’Huillier, “Singleshot Polychromatic Coherent Diffractive Imaging with a High-order Harmonic Source,” Opt. Exp., vol. 28 pp. 394-404, 2020.‏##
[10]  S. R. Leone, C. W. McCurdy, J. Burgdörfer, L. S. Cederbaum, Z. Chang, N. Dudovich, and U. Keller, “What Will it Take to Observe Processes In'real Time'?,” Nat. Photon., vol. 8 pp. 162-166, 2014.‏##
[11]  F. Krausz, and M. I. Stockman, “Attosecond Metrology: from Electron Capture to Future Signal Processing,” Nat. Photon., vol. 8 pp. 205-213, 2014.##
[12]  T. Zuo, A. D. Bandrauk, and P. B. Corkum, “Laser-Induced Electron Diffraction: a New Tool for Probing Ultrafast Molecular Dynamics,” Chem. Phys. Lett., vol. 259 pp. 313-320, ‏1996.##
[13]  R. Kienberger, E. Goulierlmakis, M. Viberacker, A. Baltuska, V. Yakovlet, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Heinzmann, M. Dresher, and F. Krausz, “Attomic Transient Recorder,” Nature, vol. 427 pp. 817-821, 2004.##
[14]  M. Protopapas, C. H. Keitel, and P. L. Knight, “Attomic Physics with Super-High Intensity Laser,” Rep. Prog. Phys., vol. 60 pp. 486-389, 1997.##
[15]  P. B. Corkum, and F. Krausz, “Attosecond Science,” Nat. Phys., vol. 3 pp. 381-387, 2007.##
[16]  S. Kim, J. Jin, Y. J. Kim, I. Park, Y. Kim, and S. W. Kim, “High-harmonic Generation by Resonant Plasmon Field Enhanced,” Nature, vol. 453 pp. 757-760, 2008.##
[17]  H. Ebadian, and M. Mohebbi, “Extending the High-order-Harmonic Spectrum Using Surface Plasmon Polaritons,” Phys. Rev. A, vol. 96 pp. 023415-‏023423, 2017.##
[18]  A. Husakou, and J. Herrmann, “Quasi-phase-matched High-harmonic Generation in Composites of Metal Nanoparticles and a Noble Gas,” Phys. Rev. A, vol. 90 pp. 023831-023839, 2014.##
[19]  F. Submann, and M. F. Kling, “Attosecond Nanoplasmonic Streaking of Localized Field Near Nanosphere,” Phys. Rev. B, vol. 84 pp. 121406-121410, 2011.##
[20]  M. F. Ciappina, T. Shaaran, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, and M. Lewenstein, “High Energy Photoelectron Emission from Gases Using Plasmonic Enhanced Near-fields,” Laser Phys. Lett., vol. 10 pp. 105302-105308, 2013.##
[21]  T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández, L. Roso, M. Arnold, and M. Lewenstein, “High-order-harmonic Generation by Enhanced Plasmonic Near-fields in Metal Nanoparticles,” Phys. Rev. A, vol. 87 pp. 041402-041407, 2013.##
[22]  S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, and S. A. Trushin, “Controlled Near-field Enhanced Electron Acceleration from Dielectric Nanospheres with Intense Few-cycle Laser Fields,” Nat. Phys., vol. 7 pp. 656-662, 2011.##
[23]  I. Y. Park, J. Choi, D. H. Lee, S. Han, S. Kim, and S. W. Kim “Generation of EUV Radiation by Plasmonic Field Enhancement Using Nano‐structured Bowties and Funnel‐waveguides,” Ann. Phys., vol. 525 pp. 87-96, 2013.‏##
[24]  M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced Atomic Line Emission,” Nature, vol. 485 pp. E1–E2, 2012.##
[25]  Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient Second Harmonic Generation in Gold–Silicon Core–Shell Nanostructures,” Opt. Express, vol. 26 pp. 5835-5844, 2018.‏##
[26]  Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light Guiding and Switching Using Eccentric Core-shell Geometries,” Sci. Rep., vol. 7 pp. 1-10, 2017.##
[27]  M. Alsawafta, M. Wahbeh, and V. V. Truong, “PlasmonicModes and Optical Properties of Gold and Silver Ellipsoidal Nanoparticles by the Discrete Dipole Approximation,” J. Nanomater., vol. 2012 pp. 457968-457967, 2012.##
[28]  A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, and J. J. Sáenz, “Strong Magnetic Response of Submicron Silicon Particles in the Infrared,” Opt. Exp., vol. 19 pp. 4815-4826, 2017.##
[29]  ‏I. Staude, and J. Schilling, “Metamaterial-inspired Silicon Nanophotonics,” Nat. Photonics vol.11 pp. 274–284 2017.##
[30]  I. Staude, and J. Schilling, “Metamaterial-inspired Silicon Nanophotonics,” Nat. Photonics, vol. 11, pp. 274–284, 2017.##
[31]  J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics, vol. 4 pp. 535–544, 2010.##
[32]  Z. J. Yang, Q. Zhao, and J. He, “Boosting Magnetic Field Enhancement with Radiative Couplings of Magnetic Modes in Dielectric Nanostructures,” Opt. Express, vol. 25 pp. 15927–15937, 2017.##
[33]  F. Ruffino, A. Pugliara, E. Carria, C. Bongiorno, and M. G. Grimaldi, “Light Scattering Calculations from Au and Au/SiO2 Core/shell Nanoparticles,” Physica E: Low Dimens. Syst. Nanostruct., vol. 47 pp. 25-33, 2013.##
[34]  Y. Tsuchimoto, T. A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the Visible Electromagnetic Resonances of Si/SiO2 Dielectric Core–shell Nanoparticles by Thermal Oxidation,” Small, vol. 11 pp. 4844-4849, 2015.##
[35]  R. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional Control of Scattering by All-dielectric Core-shell Spheres,” Opt. Lett. vol. 40 pp. 585-588, 2015.##
[36]  W. Liu, “Ultra-directional Super-Scattering of Homogenous Spherical Particles with Radial Anisotropy,” Opt. Express, vol. 23 pp.14734-14743, 2015.‏##
[37]  Y. Tsuchimoto, T. A. Yano, T. Hayashi, and M. Hara, “Fano Resonant All-dielectric Core/shell Nanoparticles with Ultrahigh Scattering Directionality in the Visible Region,” Opt. Express, vol. 24 pp. 14451-14462, 2016.##
[38]  M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic Scattering by Magnetic Spheres,” J. Opt. Soc. Am., vol. 73 pp. 765-767, 1983.‏##
[39]  S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon Enhanced Silicon Solar Cells,” J.Appl. Phys. vol. 101  pp. 093105-093112, 2007.‏##
[40]  M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced Absorption in Au Nanoparticles/a-Si: H/c-Si Heterojunction Solar Cells Exploiting Au Surface Plasmon Resonance,” Sol. EnergyMater. Sol. Cells, vol. 93 pp. 1749-1754, 2009.##
[41]  Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric Response of Magnetodielectric Core–Shell Nanoparticles: an Analysis of Scattering Directionality and Sensing,” Nanotechnology, vol. 27 pp. 234002-234010, 2016.##
[42]  C. F. Bohren, and D. R. Huffman, “Absorption andScattering of Light by Small Particles,” John Wiley & Sons, 2008.##
[43]  A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics, vol. 37 pp. 5271-5283, 1998.‏##
[44]  B. Ung, and S. Yunlong “Interference of Surface Waves in a Metallic Nanoslit,” Opt. Exp., vol. 15 pp.1182-1190, 2007.‏##
[45]  K. J. Schafer, and K. C. Kulander, “High Harmonic Generation from Ultrafast Pump Lasers,” Phys. Rev.Lett., vol. 78 pp. 638-655, 1997.‏##
[46]  K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” 668-677, 2003.‏##
[47]  S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer Science & Business Media, 2007. ##
[48]  J. M. Sanz, D. A. D. L. Ortiz, R. De La Osa, Alcaraz, J. M. Saiz, F. González, A. S. Brown, and F. Moreno, “UV Plasmonic Behavior of Various Metal Nanoparticles in the Near-and Far-Field Regimes: Geometry and Substrate Effects,” J. Phys. Chem. C, vol. 117 pp. 19606-19615, 2013.##
[49]  M. D. Feit, J. A. Fleck Jr, and A. Steiger, “Solution of the Schrödinger Equation by a Spectral Method,” J. Comput. Phys., vol. 47 pp. 412-433, 1982.‏##
[50]  Q. Su, and J. H. Eberly, “Model Atom for Multiphoton Physics,” Phys. Rev. A, vol. 44 pp. 5997-6009, 1991.##
[51]  K. J. Schafer, and K. C. Kulander, “High Harmonic Generation from Ultrafast Pump Lasers,” Phys. Rev. Lett. vol. 78 pp.638-655, 1997.##
[52]  K. J. Schafer, and K. C. Kulander, “High Harmonic Generation from Ultrafast Pump Lasers,” Phys. Rev. Lett., vol. 78 pp. 638-655, 1997.##
[53]  A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric Response of Magnetodielectric Core–shell Nanoparticles: an Analysis of Scattering Directionality and Sensing,” Nanotechnology, vol. 27 pp. 234002-234010, 2016.##