[1] M. Coulombe, H. Nguyen and C. Caloz, “Substrate integrated artificial dielectric structure for miniaturized microstrip circuits,” IEEE Antennas Wirel. Propag . vol. 6, pp. 575-579, 2007.
[2] I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, “An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF,” IEEE MTT-S Dig , vol. 1,
pp. 301–304, 2003.
[3] Y. Ma, B. Rejaei, and Y. Zhuang, “Artificial dielectric shields for integrated transmission lines,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 7, pp. 431-433, 2008.
[4] Y. Ma, B. Rejaei, and Y. Zhuang, “Low-loss onchip transmission lines with micropatterned artificial dielectric shields,” Electron. Lett, vol. 44, no. 15, pp. 913-914, 2008.
[5] K. Takahagi and E. Sano, “High-gain silicon on-chip antenna with artificial dielectric layer,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3624-3629, 2011.
[6] Sh. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review,” Mater., vol. 11, p. 458, 2018.
[7] Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He “Plasmonic and metamaterial structures electromagnetic absorbers,” vol. 8, pp . 495-520, 2014.
[8] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205-213, 2011.
[9] R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements” Adv. Mater, vol. 21, pp. 3504–3509, 2009.
[10] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its Application as plasmonic sensor” Nano Lett., vol. 10, pp. 2342–2348, 2010.
[11] D. Wu, R. Li, Y. Liu, Zh. Yu, L. Yu, L. Chen, Ch. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett., vol. 12, p. 427, 2017.
[12] M. Nejat and N. Nozhat, “Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber,” IEEE Sens. J., vol. 19, no. 22, pp. 10490-10497, 2019.
[13] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett, vol. 104, no. 20, p. 207403, 2010.
[14] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett., vol. 107, no. 4, p. 045901, 2011.
[15]A. Malakzadeh, F. Khangheshlaghi, and M. Rezayatfam, “A new light and broadband metamaterial absorber with 1.4 mm thickness for reducing the radar cross section of objects,” J. Appl. Electromagn.., vol. 8, no. 1, pp. 27-33, 2020. (In Persian)
[16] M. Biabanifard and M. S. Abrishamian, “Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons,” AEU Int. J. Electron. Commun, vol. 95, pp. 256- 263, 2018.
[17] R. Gao, Z. Xu, Ch. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multi-band and broadband terahertz absorber,” Opt. Commun., vol. 356, pp. 400- 404, 2015.
[18] N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B, vol. 79, no. 12, 2009, Art. no. 125104
[19] X. He, S. Li, X. Yang, S. Shi, F. Wu, and J. Jiang “High-sensitive dualband sensor based on microsize circular ring complementary terahertz metamaterial,” J. Electromagn. Waves Appl, vol. 31, no. 1, pp. 91-100, 2017.
[20] B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys, vol. 117, no. 1, p. 014504, 2015.
[21] A. Ebrahimi, R. T. Ako, W. S. Lee, M. Bhaskaran, S. Sriram and W. Withayachumnan, “HighQ terahertz absorber with stable angular response,” IEEE Trans. Terahertz Sci. Technol, vol. 10, no. 2, pp. 204-211, 2020.
[22] J. Yu, T. Lang, and H. Chen, “All-metal terahertz Metamaterial absorber and refractive index sensing performance,” Photonics, vol. 8, p. 164, 2021.
[23] T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett., vol. 34, p. 3012, 2009.
[24] S. Barzegar-Parizi and A. Khavasi, “Designing dual-band absorbers by graphene/metallic metasurfaces,” IEEE J. Quantum Electron., vol. 55, p. 7300108, 2019.
[25] S. Barzegar-Parizi, and A. Ebrahimi, “Ultrathin, polarization-insensitive multi-Band absorbers based on graphene metasurface with THz sensing application,” J. Opt. Soc. Am. B., vol. 37, no. 8, pp. 2372-2381, 2020.
[26] S. Barzegar-Parizi and B. Rejaei, “Calculation of effective parameters of high permittivity integrated artificial dielectrics,” IET Microw. Antennas Propag, vol. 9, no. 12, pp. 1287-1296, 2015.
[27] Y. Ma, “Ferroelectric materials and artificial dielectric layer structures for microwave integrated circuit technologies,” Ph.D. Thesis, Delft University of Technology, 2011.
[28] S. Barzegar-Parizi, A. Ebrahimi, and K. Ghorbani, “Dual-broadband and single ultrawideband absorbers from the terahertz to infrared regime,” J. Opt. Soc. Am. B., vol. 38, pp. 2628-2637, 2021.
[29] O. Luukkonen, C. Simovski, G. Gran, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov., “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1624-1632, 2008.
[30] A. A. Baba, M. A. B. Zakariya, Z. Baharudin, M. Z. u. Rehman, M. F. Ain, and Z. A. Ahmad, “Equivalent lumped-element circuit of aperture and mutually coupled cylindrical dielectric resonator antenna array," Prog. Electromagn. Res. C, vol. 45, pp. 15-31, 2013.
[31] C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two dimensional metallic meshes,” Opt. Express, vol. 18, pp. 1330913320, 2010.
[32] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.,” Appl. Optics., vol. 24, pp. 4493-4499, 1985.
[33] Kh. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan “Broadband dielectric characterization of aluminum oxide (Al2O3)” J. Micro. and Elect. Pack., vol. 5, pp. 101–106, 2008.
[34] D. Hu, T. Meng, H. Wang, Y. Ma, and Q. Zhu, “Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application,” Results in Phys., vol. 19, p. 103567, 2020.