[1] Sh .MohammadNejad and F. Aghaei, “Noise characteristics improvement of submicron InP/In GaAs avalanche photodiode for laser detection system,” 2020. (In Persian)
[2] Y. Kang and etal, “Monolithic Ge/Si avalanche hotodiodes,” 2009.
[3] A. G. Wright, “The photomultiplier handbook” Oxford University Press, 2017.
[4] L. Guipeng and etal. “Modeling a novel InP/InGaAs avalanche photodiode structure: Reducing the excess noise factor,” pp. 374-377, 2019.
[5] J. Chen and etal, “Optimization of InGaAs/InAlAs avalanche photodiodes,” 2017.
[6] G. Jianjun, “Optoelectronic integrated circuit design and device modeling,” John Wiley and Sons, 2011.
[7] A. Shabbir, “Study of Indium Tin Oxide (ITO) for Novel Optoelectronic Devices,” Degree of Doctor of Philosophy, University of London Departmentof Electronic Engineering, 1998.
[8] A. R. Hawkins, “Silicon-indium-gallium-arsenide avalanche photodetectors,” 2000.
[9] I. Silvaco, “ATLAS user’s manual,” Santa Clara, CA, 2011.
[10] D. Neamen, “Semiconductor physics and devices: basic principles,” New York, NY: McGraw-Hill,, 2012.
[11] H. Nalwa, “Photodetectors and fiber optics. Elsevier,” 2012.
[12] X. Jingjing, “Characterisation of low noise InGaAs/AlAsSb avalanche photodiodes,” Diss. University of Sheffield, 2013.
[13] J. Zhang and etal, “Advances in InGaAs/InP singlephotondetector systems for quantum communication 2015.
[14] A. Bandyopadhyay, M. Deen, and H. S. Nalwa. “Photodetectors and Fiber Optics,” Ed. HS Nalwa, Academic Press, New York , 2001.
[15] O. Kasap and Ravindra Kumar Sinha Optoelectronics and photonics: principles and ractices. vol. 340.
[16] X. Zhou, “An InGaAlAs-InGaAs two-colour detector, InAs photodiode and Si SPAD for radiation thermometry,” Diss. University of Sheffield, 2014.
[17] H. Meier “characterization and simulation of avalanche photodiodes,” Diss. ETH Zurich, 2011.
[18] M. Saleh and etal, “Impact-ionization and noise characteristics of thin avalanche photodiodes,” IEEE Transactions on Electron Devices vol.48, 2001.
[19] H. Liu and etal, “Avalanche photodiode punch through gain determination through excess noise analysis,” Journal of Applied Physics 106.6, 2009.
[20] M. Majeed, Ch. Zikuan, and A. M. Karim, “An analytical approximation for the excess noise factor of avalanche photodiodes with dead space,” pp. 344-347
[21] M. Hayat, E. A. Bahaa Saleh, and C. Malvin, “Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes, pp. 546-552.19
[22] W. Neudeck, “ The PN junction diode Addison Wesley Publishing Company.
[23] P. Kleinow and etal, “Charge layer design considerations in SAGCM InGaAs/InAlAs avalanche photodiodes,” physica status solidi, pp. 925-929, 2016.
[24] Li. Yuan and Z. Yanli, “Optimum design of the charge layer for avalanche photodiodes,” 2017.
[25] W. Parks and etal, “Theoretical study of device sensitivity and gain saturation of separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” pp. 2113-2121, 1998.
[26] Z. Yanli, “Impact ionization in absorption, grading, charge, and multiplication layers of InP/InGaAs SAGCM APDs with a thick charge layer,” pp. 3493-3499, 2013.
[27] K. Taguchi and etal, “Planarstructure InP/In GaAsP /InGaAs avalanche photodiodes with preferen tiallateral extended guard ring for 1.0-1.6 mu m wavelength optical communication use,” pp. 16431655.
[28] Y. Zhao and He. Suxiang. “Multiplication characteristics of InP/ InGaAs avalanche photodiodes with a thicker charge layer,” pp. 476-480, 2006.
[29] K. A. McIntosh and etal, “Ultraviolet photon counting with GaN avalanche photodiodes,” pp. 3938-3940, 2006.
[30] C. Campbell and etal, “Recent advances in avalanche photodiodes,” pp. 777-787, 2000.
[31] Sh. Zhang and Z. Yanli, “Study on impact ionization in charge layer of InP/InGaAs SAGCM avalanche photodiodes,” pp. 2689-2696, 2006.
[32] T. Junjie and et al, “The determination of unity gain for InGaAs/InP avalanche photodiodes with excess noise measurements,” pp. 671-674, 2017.