تحلیل و شبیه سازی تفرق از ساختارهای فرامواد با استفاده از معادلات انتگرالی سطحی و الگوریتم چند قطبی سریع چند سطحی (MLFMM) ومقایسه با روش ممان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول: دانشیار، گروه مخابرات و الکترونیک، دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز ، شیراز ، ایران

2 کارشناسی ارشد، گروه مخابرات و الکترونیک، دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز ، شیراز ، ایران

چکیده

فراماده به عنوان ساختاری مصنوعی، ماکروسکوپیک و به طور مؤثر همگن(با میانگین اندازه سلول بسیار کوچک‏تر از طول موج هدایت) تعریف می شود. در ادبیات الکترومغناطیس، پاسخ یک سیستم به یک میدان الکتریکی یا مغناطیسی تا حد زیادی توسط مشخصات مواد مورد بحث تعیین می‏شود. دو نمونه از این مشخصات مایکروسکوپیک ، ضرائب نفوذپذیری الکتریکی و مغناطیسی هستند که هردو در مواد معمولی مثبتند. با چینش آرایه‏ای از سیم‏های فلزی، می‏توان ضریب گذردهی الکتریکی منفی و با چینش آرایه‏ای از ساختارهای متناوب تشدیدکننده حلقه‏های شکافته می‏توان ضریب نفوذپذیری مغناطیسی منفی به دست آورد. برای مدل‏سازی ساختارهای فرامواد از معادلات انتگرالی میدان الکتریکی یا میدان مغناطیسی استفاده می شود که بر پایه روش عددی ممان قابل بررسی هستند. یکی از مزایای این روش این است که تنها به قطعه‏ بندی منبع می‏پردازد، البته حافظه‏ی مورد نیاز متناسب با اندازه‏ی هندسه‏ی ساختار افزایش می‏یابد. برای رفع این ایراد امروزه ازروشهای جایگزینی مانند روش چند قطبی سریع(یک سطحی و چندسطحی) استفاده می شودکه در این روش ها علاوه برمنبع، توابع پایه و نقاط مشاهده نیز قطعه بندی می گردند. در این مقاله با استفاده از معادلات انتگرالی سطحی و اعمال روش چندقطبی سریع چند سطحی به روش ممان، بررسی تفرق و محاسبه میدانهای پراکندگی از برخی سطوح فرامواد انجام می شود و نشان داده می شود که زمان محاسبات نسبت به روش ممان مستقیم، حدود 75 درصد کاهش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and Simulation of Diffraction from Metamaterials Structures by Using of Surface Integral Equations and Multi-Level Fast Multipole Method (MLFMM) and Comparison with Moment Method

نویسندگان [English]

  • farzad mohajeri 1
  • Mohammad Ebrahim Shariat 2
1 Dept. of Communications and Electronics, Shiraz University, Shiraz, Iran
2 Department of Communications and Electronics, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
چکیده [English]

Metamaterial is defined as an artificial, macroscopic, and effectively homogeneous structure (with an average unit cell size much smaller than the guide wavelength). In the electromagnetic literature, the response of a system to an electric or magnetic field is largely determined by the characteristics of the materials in question. Two examples of these microscopic properties are the electric permittivity and magnetic permeability coefficients, both of which are positive in ordinary materials. By arranging an array of metal wires, a negative electric permittivity can be obtained, and by arranging an array of periodic split ring resonator structures, a negative magnetic permeability coefficient can be obtained. To model metamaterial structures, integral equations of electric field or magnetic field are used, which can be studied based on the numerical method of moment. One of the advantages of this method is that it only segregates the source, although the required memory increases in proportion to the size of the geometry of the structure. To solve this problem, today, alternative methods such as fast multipole method (single level and multi-level) are used, which in addition to the source, the basic functions and observation points are also segmented. In this paper, using surface integral equations and multi-level fast multipole method, the diffraction and calculation of scattering fields of some metamaterial surfaces are investigated and the importance of this method compared to the direct moment method is greatly reduced in the computation time, approximately 75%.

کلیدواژه‌ها [English]

  • Metamaterial
  • Moment Method
  • Surface Integral Equations
  • Multi Level Fast Multipole Method
[1] C. Caloz and T. Itoh, “Electromagnetic Metamaterials:  Transmission Line Theory and Microwave Applications,” John Wiley & Sons, Inc, Newjersi, USA, 2005.
[2] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire,                       “Metamaterials and Negative Refractive Index,” Science, vol. 305, pp. 788-792, 2004.
[3] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs,   “Extremely low frequency plasmons in metallic mesostructure,” Physical review letters, vol. 76, pp. 4773-4776, 1996.                                                                              
[4] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,   “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions Microwave Theory Technology, vol. 47,  pp. 2075-2084, 1999.                                               
[5] Y. Oijala, P. Taskinen, and M. Järvenpää, “Surface Integral Equation Formulations for Solving Electromagnetic Scattering Problems with Iterative Methods,” Radio Science, vol. 40, p. RS6002, 2005.                                                                                   
[6] M. H. Amini and A. R. Mallahzadeh, “On the Analysis of Electromagnetic Susceptibility of Superconducting Microstrip Transmission Lines in Oblique Incidence,” Journal of Applied   Electromagnetics, vol. 9, pp. 51-54, 2021 (In Persian).          
[7] V. Greengard and L. Rokhlin, “A Fast Algorithm for Particle Simulations,” Journal of computational physics, vol. 73, pp. 325-348, 1987. 
[8] V. Rokhlin, “Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions," Journal of computational physics, vol. 86, pp. 414-439, 1986. 
[9] V. Rokhlin, “Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions,” Applied and computational harmonic analysis, vol. 1, pp. 82-93, 1993. 
[10] N. A. Gumerov and R. Duraiswami, “A Broadband Fast Multipole Accelerated Boundary Elementmethod for the Three Dimensional Helmholtz Equation,” The Journal of the Acoustical Society of America, vol. 125, pp. 191-205, 2009.
[11] C. A. Balanis, “Advanced Engineering Electromagnetics,” John Wiley & Sons, Inc, Newjersi, USA, 1989.
[12] W. C. Gibson, “The Method of Moments in Electromagnetics,” Taylor & Francis Group, United Kingdom, 2008.                          
[13] R. F. Harrington, “Field Computation by Moment Methods,” Wiley-IEEE Press, USA, 1993. 
[14] J. Stratton and O. Heaviside, “Electromagnetic Theory,” McGraw-Hill, Inc., New York, USA, 1941.
[15] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic Scattering by Surfaces of Arbitrary Shape,” IEEE Transactions on Antennas and Propagation, vol. 30, pp. 409-418, 1982.                                              
[16] J. M. Song and W. C. Chew, “Error Analysis for the Truncation of Multipole Expansion of Vector Green’s Functions,” IEEE Microwave Wireless Components Letters, vol. 11, pp. 311-313, 2011.
[17] J. D. Foley, A. Van Dam, S. K. Feiner, J. Hughes, M. McGuire, D. F. Sklar, and K. Akeley,   “Computer Graphics: Principles and Practice,” Addison-Wesley, Boston, USA, 1996.
دوره 10، شماره 2 - شماره پیاپی 25
شماره پیاپی 25، دوفصلنامه پاییز و زمستان
آبان 1401
صفحه 23-34
  • تاریخ دریافت: 18 خرداد 1400
  • تاریخ بازنگری: 05 بهمن 1400
  • تاریخ پذیرش: 15 تیر 1401
  • تاریخ انتشار: 01 آبان 1401