تأثیر میدان مغناطیسی محوری یکنواخت قوی بر میدان مُدهای TE و TM و حرکت الکترون تزریق‌شده در موج‌بری حاوی پلاسما با سطح مقطع پیت هاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه لیزر و فوتونیک، دانشکده فیزیک، دانشگاه کاشان، کاشان، ایران

2 نویسنده مسئول: دانشیار، گروه لیزر و فوتونیک، دانشکده فیزیک، دانشگاه کاشان، کاشان، ایران

چکیده

در این مقاله، با در نظر گرفتن تأثیر میدان مغناطیسی محوری یکنواخت قوی در تانسور گذردهی الکتریکی پلاسما، میدان‌های الکترومغناطیسی و نتایج دیگری در یک موج‌بر با دیواره‌ی فلزی و با سطح مقطعی به شکل منحنی پیت هاین که حاوی پلاسمای سرد و به‌شدت مغناطیده است، با استفاده از یک تقریب مناسب تحقیق و بررسی می‌شوند. در ابتدا با معرفی موج‌بر پیت هاین، معادله‌ی موج الکترومغناطیسی در این نوع موج‌بر، با استفاده از یک تقریب مناسب و به روش جداسازی متغیرها، به‌صورت دو معادله‌ی دیفرانسیلی مجزا، ارائه می‌شود. سپس میدان‌های الکتریکی و مغناطیسی و همچنین معادله‌ی پاشندگی برای مدهای TM و TE در یک موج‌بر پیت هاین با دیواره‌ی فلزی که حاوی پلاسمای سرد به‌شدت مغناطیده است محاسبه و معادلات پاشندگی و میدان‌های به‌دست‌آمده ترسم می‌شوند. در ادامه حرکت یک الکترون تزریق‌شده به داخل این موج‌بر و تأثیر میدان مغناطیسی محوری یکنواخت قوی بر انرژی الکترون بررسی می‌شود. معادلات حرکت و انرژی الکترون در موج‌بر پلاسمایی پیت هاین و در حضور میدان مغناطیسی محوری یکنواخت قوی نوشته می‌شوند و با استفاده از روش رانگ کوتای مرتبه‌ی چهار برای مدهای TM و TE حل می‌گردد. مسیر حرکت و انرژی جنبشی الکترون تزریق‌شده به موج‌بر برای هر دو مد به‌صورت گرافیکی موردتحقیق قرارگرفته‌اند.

کلیدواژه‌ها


[1]    E.Snitzer “Cylindrical Dielectric Waveguide Modes,” Journal of the Optical Society of America, vol. 51, pp. 491-498, 1961
[2]    A. Kumar, Thyagaranjan V, Ghatak AK: “Analysis of Rectangular Core Dielectric Waveguides: An Accurate Perturbation Approach,” Optics Letters, vol. 8,  pp. 63-65, 1983.
[3]    C. Yeh,.“Elliptical Dielectric Waveguide,” Journal of Applied Physics, Vol. 33, pp. 3235-3242, 1962.
[4]    C. Yeh, “Modes in Weakly Guiding Elliptical Optical Fibers,” Optical and Quantum Electronics, vol. 8, pp.43-47, 1976.
[5]    R. B. Dyott, “Glass-fiber Waveguide with Triangular Core,”Electronics Letters, vol. 9, pp. 288-290, 1973.
[6]    J. R. James and I. N. L. Gallett, “Modal Analysis of Triangular Cored Fiber Waveguide,” Proceedings of the Institution of Electrical Engineers, vol. 120, pp. 1362-1370, 1973.
[7]    M. P. S. Rao, B. Prasad, P. Khastgir, and S. P. Ojha, “Modal Cutoff Conditions for an Optical Waveguide with a Hypocycloidal Cross Section,” Microwave and Optical Technology Letters, vol. 14, pp. 177-180, 1997.
[8]    M. P. S. Rao, V. Singh, B. Prasad, P. Khastgir, and S. P. Ojha, “An Analytical Study of the Dispersion Curves of an Annular Waveguide Made of Liquid Crystal,” Photonics Optoelectron, vol.  5, pp. 73-78, 1998.
[9]    V. N. Mishra, V. Singh, B. Prasad, and S.P. Ojha, “An Analytical Investigation of the Dispersion Characteristic of a Lightguide with an Annular Core Cross-Section Bounded by Two Cardiods,” Microwave and Optical Technology Letters, vol. 23, pp. 221-224, 1999. 
[10]  V. Mishra, “A Study on Piet Hein and Other Unconventional Geometry in Optical Waveguides,” PhD. Thesis, Deptartment of Applied Physics, I. T. B. H. U. Varanasi, India 1997. 
[11]  V. Singh, B. Prasad, and S. P. Ojha, “Effect of Axial Sinusoidal Size Variation on the Modal Characteristics of an Annular Optical Fiber,” Microwave and Optical Technology Letters, vol. 31, pp. 211-214, 2001. 
[12]  V. Singh, B. Prasad, and S. P. Ojha, “Weak Guidance Modal Analysis and Dispersion Curves of an Infrared-Lightguide Having a Core Cross-Section with a New Type of Asymmetric Loop Boundary,” Optical Fiber Technology, vol. 6, pp. 290-298, 2000.
[13]  V. Singh, M. Joshi, B. Prasad, and S. P. Ojha, “Modal Dispersion Characteristics and Waveguide Dispersion of an Optical Waveguide Having a New Unconventional Core Cross-Section,” Journal of Electromagnetic Waves and Applications, vol. 18, pp. 455-468, 2004.
[14]  V. Singh, B. Prasad, and S. P. Ojha: “Theoretical Analysis and Dispersion Curves of an Annular Lightguide with a Cross-Section Bounded by Two Piet-Hein Curves,” Journal of Electromagnetic Waves and Applications,  vol. 17 pp. 1025-1036, 2003.
[15]  V. Singh, S. N. Maurya, B. Prasad, and S. P. Ojha, “Conducting Sheath Helical Winding on the Core-Cladding Interface of a Lightguide Having a Piet Hein Super Elliptical Core Cross-Section and a Standard Optical Fiber of Circular Cross-Section - A Comparative Modal Analysis,” Progress in Electromagnetics Research, PIER, vol. 59, pp. 231-249, 2006.
[16]  F. Nazari, H. Aliakbarian, and S. Radiom, “Design and Fabrication of Dielectric Constant Measurement Setup without Sample Holder in C band Motor, Scientific,” Journal of Applied Electromagnetics, vol. 4, pp. 1-10, 2016 (In Persian).
[17]  S. Jalil Seyedhoseini, R. A. Sadeghzadeh, and H. Aliakbarian, “An Improved TEM-TE11 Mode-Treansducing Sectoral Antenna Using Dual Dielectric Window, Scientific,” Journal of Applied Electromagnetics, vol. 4, pp. 21-16, 2016 (In Persian).
[18]  B. F. Mohamed  and A. M. Gouda, “Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide,” Plasma Science and Technology vol. 13,  pp. 357-361, 2011.
[19]  B. F. Mohamed, A. M. Gouda, and L. Z. Ismail, “Electron Dynamics in Presence of Static Helical Magnet Inside Circular Waveguide,” IEEE Transactions on Plasma Science, vol. 39, pp. 842-846, 2011.
[20]  S. Kumar and M. Yoon, “Electron Dynamics and Acceleration Study in a Magnetized Plasma-Filled Cylindrical Waveguide,” Journal of Applied Physics, vol. 103, pp. 023302, 2008.
[21]  S. Kumar and M. Yoon, “Electron Acceleration in a Warm Magnetized Plasma-Filled Cylindrical Waveguide,” Journal of Applied Physics, vol. 104, pp. 073303, 2008.
[22]  H. K. Malik,  S. Kumar, and K. P. Singh, “Electron Acceleration in a Rectangular Waveguide Filled with Unmagnetized Inhomogeneous Cold Plasma,” Laser and Particle Beams, vol. 26, pp. 197-205, 2008.
[23]  S. K. Jawla,  S. Kumar, and H. K. Malik, “Evaluation of Mode Fields in a Magnetized Plasma Waveguide and Electron Acceleration,” Optics communications, vol. 251, pp. 346-360, 2005.
[24]  D. N.  Gupta N. Kant,D.E .Kim and H. Suk,     “Electron Acceleration to GeV Energy by a Radially Polarized Laser,” Physics Letters A, vol. 368, pp. 402-407, 2007.
[25]  M. Litos,  et al. “High-Efficiency Acceleration of an Electron Beam in a Plasma Wakefield Accelerator,” Nature, vol. 515, pp. 92-95, 2014.
[26]  X., Liling, W. Gai, and X. Sun, “Field Analysis of a Dielectric-Loaded Rectangular Waveguide Accelerating Structure,” Physical Review E, vol. 65, pp. 016505, 2001.
[27]  A. Abdoli-Arani  and M. J. Basiry, “Influence of Electron–Ion Collisions in Plasma on the Electron Energy Gain Using the TE11 Mode Inside an Elliptical Waveguide,” Physica Scripta, vol. 91, pp. 095602, 2016.
[28]  A. Abdoli-Arani  and M. Moghaddasi, “Study of Electron Acceleration through the Mode in a Collisional Plasma-Filled Cylindrical Waveguide,” Waves in Random and Complex Media, vol. 26, pp. 339-347, 2016.
[29]  A. Abdoli-Arani, “Electron Acceleration Considering Pondermotive Force Effect in a Plasma-Filled Rectangular Waveguide by Microwave Radiation,” Waves in Random and Complex Media, vol. 26, pp. 407-416, 2016.
[30]  A. Abdoli-Arani  and N. Ghanbari, “Nonlinear Effect of Microwave Longitudinal Ponderomotive Force on the Dynamics and Energy of an Externally Injected Electron in an Inhomogeneous Plasma-Filled Circular and Elliptical Cylinder Waveguides,” Waves in Random and Complex Media, vol. 31, pp. 165-181, 2021.
[31]  A. Abdoli-Arani, “Electron Energy Gain in the Transverse Electric Mode of a Coaxial Waveguide Filled with Plasma by Microwave Radiation,” Waves in Random and Complex Media, vol. 25,  pp. 350-360, 2015.
[32]  A. Abdoli-Arani, “Electron Energy Gain in the Fundamental Mode of an Elliptical Waveguide in the Presence of Static Helical Magnet by Microwave Radiation,” Waves in Random and Complex Media, vol. 25, pp. 243-258, 2015.
[33]  A. Abdoli-Arani,  M. Kadkhodaei, and Z. Rahmani Nooshabadi, “Single Electron Acceleration in an Isosceles Right Triangular Waveguide,” Indian Journal of Physics, vol. 94, 1279-1292, 2020.