بررسی نظری تاثیر شکل ساختار و اندازه مغزی در گاف نواری فیبرهای کریستال فوتونی با مغزی تهی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

چکیده

در فیبرهای کریستال فوتونی با مغزی تهی، هدایت پرتو بر اساس وجود گاف‌های نواری صورت می‌گیرد. دو ساختار شانه عسلی و مثلثی زیر مجموعه ساختارهای متناوب سه‌گوش است. در این مقاله تاثیر شکل ساختار، کسر پر شدگی هوا و اندازه مغزی بر گاف نواری فیبرهای مغزی تهی با دو ساختار مثلثی و شانه عسلی بررسی و با هم مقایسه شده است. پایه ساختار استوانه‌ای با میله‌های هوا در محیط سیلیکایی در نظر گرفته شده است. مد انتقالی دارای قطبش مد هیبرید است. شبیه سازی ساختارهای مثلثی و شانه عسلی در سه بعد نشان می‌دهد که گاف نواری برای مدهای عرضی وجود ندارد. باند انتقال انرژی در محدوده باند C است و کلیه مشخصات هر دو ساختار شامل ثابت شبکه، کسر پرشدگی و فاصله بین دو حفره در شبیه‌سازی یکسان در نظر گرفته شده است. نتایج این مقاله با استفاده از نرم افزار آرسافت ارائه شده است.

کلیدواژه‌ها


Smiley face

[1]    X. L. Yang, L. Z. Cai and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three noncoplanar beams”, Opt. express., Vol. 11, pp. 1050-1055, 2003.
[2]    C. Y. Kao, S. Osher, E. Yablonovitch, “maximizing band gaps in two-dimensional photonic crystal by using level set methods”, App. Physic. B., Vol. 81, pp. 235-244, 2005.
[3]    F. Wen, S. David, X. Checoury, M. E. Kurdi, P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations”, Opt. Expres., Vol. 16, pp. 12278- 12289, 2008.
[4]    M. Karimi, “Analysis of Photonic Crystal fibers Using Finite Difference Frequency Domain Method”, J. App. Electromagnet., Vol. 1, pp. 33-42, 2018.
[5]    M. Midrio, M. P. Singh, and C. G. Someda, "The Space Filling Mode of Holey Fibers: An Analytical Vectorial Solution", IEEE J. Ligthwave. Technol., Vol. 18, pp. 1031-1037, 2000.
[6]    A. Bjarklev, J. Broeng, and A. S. Bjarklev, "Photonic crystal fibers", Kluwer Academic Publishers, London, 2003.
[7]    F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications”, Nanophotonics, Vol. 2, pp 3-5, 2013.
[8]    M. J. Li, J. A. West, and K. W. Koch, “Modeling Effects of Structural Distortions on Air-Core Photonic Bandgap Fibers”, J.  Lightwave. Technol., Vol. 25, pp. 2463-2468, 2007.
[9]    V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. L. Rouge, Y. Quiquempois, and M. Douay, “Overview on Solid Core Photonic BandGap Fibers”, Fiber and Integrated Optics, Vol. 28, pp.27–50, 2009.
[10]  X. E. Lin, “Photonic band gap fiber accelerator”, Phys.Rev. Special. Top. Accelerators and Beams, Vol. 4, pp. 051301-1: 7, 2001.
[11]  - F. BENABID, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology”, Phil. Trans. R. Soc. A, Vol. 364, pp. 3439–3462, 2006.
[12]  S. R. Sandoghchi; G. T. Jasion; N. V. Wheeler; J. P. Wooler; R. P. Boardman; N. Baddela; Y. Chen, J. Hayes, E. Numkam Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, D. J. Richardson, “X-ray tomography for structural analysis of microstructured optical fibres and preforms”, in European Conference on Optical Communication (ECOC), P. 14768224, 2014.
[13]  M. Skorobogatiy, “Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors”, J. sensor, Article ID 524237, 2009.
[14]  S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. Numkam Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms”, Opt. Expres., Vol. 22, pp. 26181-26192, 2014.
[15]  A. Abdallah, “Experimental Study on the Concept of Hollow-Core Photonic Bandgap Fiber Stethoscope”, International Journal of Optics, Vol. 4, Article ID 6576397, 2018.
[16]  M. Wang, Y. Yang, L. Xing, Y. Zheng, W. Fan, W. Hu, C. Y. Jia, J. Chen, J. Zhang, T. Chang, H. L. Cui, “Terahertz low-loss hollow-core pipe waveguides”, Opt. Engin., Vol. 54, pp. pp. 085106 (1-6), 2015.
[17]  6- F. Poletti, M. N. Petrovich and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications”, J.  NanoPhoton., Vol. 0042, 2013.
[18]  A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell,1 F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]”, Opt. material. Expres. Vol. 2, pp. 948-961, 2012.
[19]  Fsaifes, G. Feugnet, A. Ravaille, B. t. Debord, F.  Gerome, A. Baz, G. Humbert, F. Benabid, S. Schwartz, and F. Bretenaker, “A Test Resonator for Kagome Hollow-Core Photonic Crystal Fibers for Resonant Rotation Sensing”, arXiv:1601.02899v2, Phys. Opt., 2016.
[20]  M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb Photonic Bandgap Fiber with a Modified Core Design”, IEEE Photon. Technol. Lett., Vol. 16, pp. 2051-2053, 2004.
[21]  M. Karimi, “Analysis of Photonic Band-gap Fibers with the Triangular air Hole Structure Using Plane Wave Method”, second national conference on advanced research in engineering and applied sciences, university of ayatollah ozma broujerdi, broujerd, Iran, P. 1820239, 2020. 
[22]  M. Karimi, 2019, “Design and feasibility study of optical waveguide for beam transition for infrared interferometer”, Final report, FRI-F4-96-002.
[23]  y. li, c. wang, x. lu, m. hu, y. chen, b. liu, and l. chai, “Bandgap properties of Kagome photonic crystal fibers”, Appl. Phys. B, Vol. 86, pp. 235–242, 2007.
[24]  L Vincetti1, M. Maini1, F. Poli, A. Cucinotta, and S. Selleri, “Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice”, Opt. and Quant. Electron. Vol. 38, pp-903-912, 2006.
[25]  L. Genovese, F. Lemery, M. Kellermeier, F. Mayet1, W. Kuropka1, U. Dorda, R. Assmann, “Tolerance studies and limitations for photonic bandgap fiber accelerators”, 10th Int. Particle Accelerator Conf., pp. 3605-3608, 2019.
[26]  J. Hu, and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for non-silica glasses”, Opt. Expres., Vol. 15, pp. 339-349, 2006.
[27]  M. Skorobogatiy, “Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors”, J. sensor, Article ID 524237, 2009.
[28]  M. Yan, P. Shum, and J. Hu, “Design of air-guiding honeycomb photonic bandgap fiber”, Opt. Lett., Vol. 30, pp. 465-467, 2005.
[29]  A. V. Dyogtyev, I. A. Sukhoivanov, and R. M. De La Rue, “Photonic band-gap maps for different two dimensionally periodic photonic crystal structures”, J. App. Phys., Vol. 107, pp. 013108-1: 7, 2010.
[30]  K. Xie, W. Zhang, A. D. Boardman, H. Jiang, Z. Hu, Y. Liu, M. Xie, Q. Mao, L. Hu, Q. Li, T. Yang, F. Wen, and E. Wang, “Fiber guiding at the Dirac frequency beyond photonic bandgaps”, Light. Science & Applications, Vol. 4, pp. e304 (1-8), 2015.
[31]  F. Wen, S. David, X. Checoury, M. E. Kurdi, P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations”, Opt. Expres., Vol. 16, pp. 12278- 12289, 2008.
[32]  R. Buczynski, “Photonic Crystal Fibers”, Proceedings of the XXXIII International School of Semiconducting Compounds, Jaszowiec, Vol. 106, pp. 141-168, 2004.
[33]  R. Gajić, R. Meisels, F. Kuchar, K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals”, Physic. Rev. B., Vol. 73, pp. 165310 (1-6), 2006.
[34]  R. J. Noble, J. E. Spencer, and B. T. Kuhlmey, “Hollow-core photonic band gap fibers for particle acceleration”, Phys. Rev. Special Top. Accelerators and beams, Vol. 14, pp. 121303 (1-8), 2011.
[35]  M. Karimi, 2021, “Analysis and simulation of hollow core photonic band gap fibers using finite element method by software and comparison the results with plan wave method.”, Final report, PRI-L1-98-003.
[36]  F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, Towards high-capacity fibre-optic communications at the speed of light in vacuum”, Nat. Photonics, Vol. 7, pp. 279–284, 2013.
[37]  Y. YOU, H. GUO, Y. HAO, Z. WANG, AND Y. G. LIU, “Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber”, Opt. Expres., Vol. 29, pp. 24226- 24236, 2021.
[38]  F. Aniqa Salwa, M. M. Rahman, M. O. Rahman, M. A. M. Chowdhury, “Germanium Based Two-Dimensional Photonic Crystals: The Hexagonal and Honeycomb Lattices”, Opt. and Photon. J., Vol. 9, pp. 25-36, 2019.
[39]  R. Hillebrand, W. Hergert, “Band gap studies of triangular 2D photonic crystals with varying pore roundness”, Solid State Communications, Vol. 115, pp. 227-232, 2000.
[40]  J. h. Chen, Y. f. Xiong, F. Xu,  and Y. q. Lu, “Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology”, Science & Applications, Vol. 10: 78, 2021. 
[41] J. -K. Yang, Y. Hwang, and S. S. Oh, “Evolution of topological edge modes from honeycomb photonic crystals to triangular-lattice photonic crystals”, Phys. Rev. Research., Vol 3, pp. l022025-1: 7, 2021.