آشکارسازی ناهنجاری مغناطیسی مبتنی بر روش تجزیه حالت تجربی و ویژگی حداقل آنتروپی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 دانشیار، دانشگاه جامع امام حسین (ع)، تهران، ایران

3 استادیار، دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

آشکارسازی ناهنجاری مغناطیسی (MAD)، یک روش غیرفعال برای آشکارسازی هوا پایه اجسام زیرسطحی است. امواج نوری، راداری و صوتی، قادر به عبور از هوای آزاد به محیط آب دریا و نفوذ به عمق آب نبوده، میرا شده و یا به محیط هوا برمی‌گردند. از طرف دیگر خطوط نیروی میدان مغناطیسی در این مرز بدون تغییر هستند. روش‌ MAD بر اساس اندازه‌گیری کوچک‌ترین تغییرات یا اختلال ایجادشده در میدان مغناطیسی زمین براثر عبور یک شئ فرو مغناطیسی و میدان دو‌قطبی مغناطیسی تولیدشده در اطراف آن، استوار است و به‌ویژه در آب‌های کم‌عمق، یکی از کارآمدترین روش‌ها به شمار می‌رود. با توجه به کاهش سریع میدان مغناطیسی با افزایش فاصله، اختلال مغناطیسی تولیدشده توسط هدف مغناطیسی در فاصله دور، معمولاً در نویز مغناطیسی، مدفون می‌شود و به‌عبارت‌دیگر نسبت سیگنال به نویز (SNR) پایین می‌آید.
در این مقاله به‌منظور بهبود عملکرد آشکارسازی اختلال مغناطیسی در SNR پایین، یک روش ترکیبی از MAD مبتنی بر روش تجزیه حالت تجربی (EMD)، و حداقل آنتروپی، پیشنهادشده است. به‌منظور ارزیابی عملکرد روش، یک دستگاه اندازه‌گیری الکترونیکی ساخته‌شده و داده‌های مغناطیسی به‌صورت میدانی از دریای کاسپین در محدوده‌ی بندر انزلی برداشت‌شده است. این داده‌ها که آغشته به نویز مغناطیسی محیطی است به روش آنتروپی موردبررسی قرارگرفته است. با توجه به ویژگی آنتروپی، ناهنجاری مغناطیسی هر زمان که آنتروپی زیر آستانه‌ی تعریف‌شده تنزل یابد، تشخیص داده می‌شود. به‌این‌ترتیب، روش پیشنهادی برای آشکارسازی ناهنجاری مغناطیسی ضعیف هم مؤثر است. نتایج آزمایش نشان‌دهنده احتمال آشکارسازی بالای روش پیشنهادی برای SNR ورودی پایین است. در مقایسه با SNR سیگنال اصلی که 10dB- است، SNR سیگنال بازسازی‌شده به 8dB بهبودیافته است. به‌علاوه، زمان کل به‌روزرسانی پارامترهای تابع چگالی احتمال PDF) (، نویز حدود 0/075s به‌دست‌آمده است.

کلیدواژه‌ها


Smiley face

[1]    S. L. Tantum, Y. Yu, and L. M. Collins, “Bayesian mitigation of sensor position errors to improve unexploded ordnance detection,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 1, pp. 103–107, 2008.
[2]    Z. Guo, D. Liu, Q. Pan, Y. Zhang, Y. Li, and Z. Wang, “Vertical magnetic field and its analytic signal applicability in oil field underground pipeline detection,” Journal of Geophysics and Engineering, vol. 12, no. 3, pp. 340–350, 2015.
[3]    J. A. Baldoni and B. B. Yellen, “Magnetic tracking system: monitoring heart valve prostheses,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2430–2432, 2007.
[4]    D. Liu, X. Xu, C. Huang et al., “Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence,” Measurement Science and Technology, vol. 26, no. 1, 2015.
[5]    J. Ge, S. Wang, H. Dong et al., “Real-time detection of moving magnetic target using distributed scalar sensor based on hybrid algorithm of particle swarm optimization and gauss-newton method,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10717–10723, 2020.
[6]    C. Wan, M. Pan, Q. Zhang, D. Chen, H. Pang, and X. Zhu, “Performance improvement of magnetic anomaly detector using karhunen–loeve expansion,” IET Science, Measurement and Technology, vol. 11, no. 5, pp. 600–606, 2017.
[7]    A. Sheinker, N. Salomonski, B. Ginzburg, L. Frumkis, and B.- Z. Kaplan, “Magnetic anomaly detection using entropy filter,” Measurement science and technology, vol. 19, no. 4, 2008.
[8]    A. Sheinker, A. Shkalim, N. Salomonski, B. Ginzburg, L. Frumkis, and B.-Z. Kaplan, “Processing of a scalar magnetometer signal contaminated by 1/fα noise,” Sensors and Actuators A: Physical, vol. 138, no. 1, pp. 105–111, 2007.
[9]    A. Sheinker, B. Ginzburg, N. Salomonski, P. A. Dickstein, L. Frumkis, and B.-Z. Kaplan, “Magnetic anomaly detection using high-order crossing method,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1095–1103, 2012.
[10] C. Wan, M. Pan, Q. Zhang, F. Wu, L. Pan, and X. Sun, “Magnetic anomaly detection based on stochastic resonance,” Sensors and Actuators A: Physical, vol. 278, pp. 11–17, 2018.
[11] L. Fan, X. Kang, Q. Zheng et al., “A fast linear algorithm for magnetic dipole localization using total magnetic field gradient,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1–1038, 2017.
[12] Y. Tang, Z. Liu, M. Pan et al., “Detection of magnetic anomaly signal based on information entropy of differential signal,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 4, pp. 512–516, 2018. 2019.
[13] H. Zhou, Z. Pan, and Z. Zhang, “Magnetic anomaly detection with empirical mode decomposition trend filtering,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E100.A, no. 11, pp. 2503–2506, 2017.
[14] B. Ginzburg, L. Frumkis, and B. Z. Kaplan, “Processing of magnetic scalar gradiometer signals using orthonormalized functions,” Sensors and Actuators A: Physical, vol. 102, no. 1-2, pp. 67–75, 2002.
[15] L. Fan, C. Kang, H. Hu et al., “Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions,” Measurement Science and Technology, 2020.
[16] A. Sheinker, A. Shkalim, N. Salomonski, B. Ginzburg, L. Frumkis, and B.-Z. Kaplan, “Processing of a scalar magnetometer signal contaminated by 1/f α noise,” Sensors and Actuators A: Physical, vol. 138, no. 1, pp. 105–111, 2007.
[17] S. Liu, J. Hu, P. Li et al., “Magnetic anomaly detection based on full connected neural network,” IEEE Access, vol. 7, pp. 198–206, 2019.
[18] H. Zhao, J. Zheng, W. Deng, and Y. Song, “Semi-supervised broad learning system based on manifold regularization and broad network,” IEEE Transactions on Circuits and Systemst, Regular Papers, vol. 67, no. 3, pp. 983–994, 2020.
[19] W. Deng, H. Liu, J. Xu, H. Zhao, and Y. Song, “An improved quantum-inspired differential evolution algorithm for deep belief network,” IEEE Transactions on Instrumentation and Measurement, 2020.
[20] S. Nalband, A. Prince, and A. Agrawal, “Entropy-based feature extraction and classification of vibro arthographic signal using complete ensemble empirical mode decomposition with adaptive noise,” IET Science, Measurement and Technology, vol. 12, no. 3, pp. 350–359, 2018.
[21] C. Wan, M. Pan, Q. Zhang, D. Chen, H. Pang, and X. Zhu, “Performance improvement of magnetic anomaly detector using Karhunen-Loeve expansion,” IET Science, Measurement & Technology, vol. 11, no. 5, pp. 600–606, 2017.
[22] M. Jafari Moghadam, M. Aghababaei, “Design and Construction Laboratory Sample of a Magnetic Anomaly Detector (MAD), ” Master's thesis, Faculty of Electrical and Electronics, Imam Khomeini University of Marine Sciences, Nowshahr, summer 2015 (in Persian).