[1] S. L. Tantum, Y. Yu, and L. M. Collins, “Bayesian mitigation of sensor position errors to improve unexploded ordnance detection,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 1, pp. 103–107, 2008.
[2] Z. Guo, D. Liu, Q. Pan, Y. Zhang, Y. Li, and Z. Wang, “Vertical magnetic field and its analytic signal applicability in oil field underground pipeline detection,” Journal of Geophysics and Engineering, vol. 12, no. 3, pp. 340–350, 2015.
[3] J. A. Baldoni and B. B. Yellen, “Magnetic tracking system: monitoring heart valve prostheses,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2430–2432, 2007.
[4] D. Liu, X. Xu, C. Huang et al., “Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence,” Measurement Science and Technology, vol. 26, no. 1, 2015.
[5] J. Ge, S. Wang, H. Dong et al., “Real-time detection of moving magnetic target using distributed scalar sensor based on hybrid algorithm of particle swarm optimization and gauss-newton method,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10717–10723, 2020.
[6] C. Wan, M. Pan, Q. Zhang, D. Chen, H. Pang, and X. Zhu, “Performance improvement of magnetic anomaly detector using karhunen–loeve expansion,” IET Science, Measurement and Technology, vol. 11, no. 5, pp. 600–606, 2017.
[7] A. Sheinker, N. Salomonski, B. Ginzburg, L. Frumkis, and B.- Z. Kaplan, “Magnetic anomaly detection using entropy filter,” Measurement science and technology, vol. 19, no. 4, 2008.
[8] A. Sheinker, A. Shkalim, N. Salomonski, B. Ginzburg, L. Frumkis, and B.-Z. Kaplan, “Processing of a scalar magnetometer signal contaminated by 1/fα noise,” Sensors and Actuators A: Physical, vol. 138, no. 1, pp. 105–111, 2007.
[9] A. Sheinker, B. Ginzburg, N. Salomonski, P. A. Dickstein, L. Frumkis, and B.-Z. Kaplan, “Magnetic anomaly detection using high-order crossing method,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1095–1103, 2012.
[10] C. Wan, M. Pan, Q. Zhang, F. Wu, L. Pan, and X. Sun, “Magnetic anomaly detection based on stochastic resonance,” Sensors and Actuators A: Physical, vol. 278, pp. 11–17, 2018.
[11] L. Fan, X. Kang, Q. Zheng et al., “A fast linear algorithm for magnetic dipole localization using total magnetic field gradient,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1–1038, 2017.
[12] Y. Tang, Z. Liu, M. Pan et al., “Detection of magnetic anomaly signal based on information entropy of differential signal,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 4, pp. 512–516, 2018. 2019.
[13] H. Zhou, Z. Pan, and Z. Zhang, “Magnetic anomaly detection with empirical mode decomposition trend filtering,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E100.A, no. 11, pp. 2503–2506, 2017.
[14] B. Ginzburg, L. Frumkis, and B. Z. Kaplan, “Processing of magnetic scalar gradiometer signals using orthonormalized functions,” Sensors and Actuators A: Physical, vol. 102, no. 1-2, pp. 67–75, 2002.
[15] L. Fan, C. Kang, H. Hu et al., “Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions,” Measurement Science and Technology, 2020.
[16] A. Sheinker, A. Shkalim, N. Salomonski, B. Ginzburg, L. Frumkis, and B.-Z. Kaplan, “Processing of a scalar magnetometer signal contaminated by 1/f α noise,” Sensors and Actuators A: Physical, vol. 138, no. 1, pp. 105–111, 2007.
[17] S. Liu, J. Hu, P. Li et al., “Magnetic anomaly detection based on full connected neural network,” IEEE Access, vol. 7, pp. 198–206, 2019.
[18] H. Zhao, J. Zheng, W. Deng, and Y. Song, “Semi-supervised broad learning system based on manifold regularization and broad network,” IEEE Transactions on Circuits and Systemst, Regular Papers, vol. 67, no. 3, pp. 983–994, 2020.
[19] W. Deng, H. Liu, J. Xu, H. Zhao, and Y. Song, “An improved quantum-inspired differential evolution algorithm for deep belief network,” IEEE Transactions on Instrumentation and Measurement, 2020.
[20] S. Nalband, A. Prince, and A. Agrawal, “Entropy-based feature extraction and classification of vibro arthographic signal using complete ensemble empirical mode decomposition with adaptive noise,” IET Science, Measurement and Technology, vol. 12, no. 3, pp. 350–359, 2018.
[21] C. Wan, M. Pan, Q. Zhang, D. Chen, H. Pang, and X. Zhu, “Performance improvement of magnetic anomaly detector using Karhunen-Loeve expansion,” IET Science, Measurement & Technology, vol. 11, no. 5, pp. 600–606, 2017.
[22] M. Jafari Moghadam, M. Aghababaei, “Design and Construction Laboratory Sample of a Magnetic Anomaly Detector (MAD), ” Master's thesis, Faculty of Electrical and Electronics, Imam Khomeini University of Marine Sciences, Nowshahr, summer 2015 (in Persian).