بهبود مشخصه‌های نوری سلول خورشیدی پروسکایت با استفاده از ساختار کریستال فوتونی سه‌بعدی روتایل تیتانیوم دی‌اکسید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران،

2 استاد ، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران،

3 دانشیار ، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران،

4 دانشیار، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

سلول‌های خورشیدی پروسکایت به دلیل عملکرد نوری و الکتریکی خوب و فرآیند ساخت ساده، توجه زیادی را به خود جلب کرده‌اند. کریستال‌های فوتونی نیز به‌واسطه افزایش جذب نوری و شکاف باند فوتونی، کاربرد گسترده‌ای در سلول‌های خورشیدی دارند. در این تحقیق یک سلول خورشیدی پروسکایتی مبتنی بر کریستال فوتونی طراحی شده است که نسبت به بسیاری از ساختارهای سلول خورشیدی که تاکنون پیشنهاد شده‌اند عملکرد بهتری داشته است. با قراردادن کریستال فوتونی سه‌بعدی نانوکره‌ای روتایل تیتانیوم دی‌اکسید در لایه فعال سلول خورشیدی پروسکایت و با انتخاب مقادیر مناسب شعاع و ثابت شبکه، میزان جذب افزایش‌یافته و چگالی جریان اتصال کوتاه mA/cm 12/27 حاصل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of optical characteristics of perovskite solar cell using rutile titanium dioxide three-dimensional photonic crystal structure

نویسندگان [English]

  • Naarin Fatehi 1
  • Saeed Olyaee 2
  • Seifouri Mahmoud 3
  • Fariborz Parandin 4
1 Master's degree, Shahid Rajaee Teacher Training University, Tehran, Iran
2 Professor, Shahid Rajaee Teacher Training University, Tehran, Iran
3 Associate Professor, Shahid Rajaee Teacher Training University, Tehran, Iran ,
4 Associate Professor, Islamic Azad University, Kermanshah, Iran
چکیده [English]

Perovskite solar cells have attracted a lot of attention due to their good optical and electrical performance as well as their simple manufacturing process. Photonic crystals have a wide range of applications in solar cells due to their increased light absorption and photonic bandgap. In this study, a perovskite solar cell based on a three-dimensional photonic crystal nanostructured rutile titanium dioxide is designed, which has a better performance compared to many of the solar cell structures proposed so far. By placing a three-dimensional photonic crystal nanostructured rutile titanium dioxide in the active layer of the perovskite solar cell and selecting the proper radius and lattice constant, the absorption rate is increased and a short-circuit current of 27.12 mA/cm2 was obtained..

کلیدواژه‌ها [English]

  • Perovskite solar cell
  • photonic crystal
  • short-circuit current density
  • rutile titanium dioxide

Smiley face

 
[1]          J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-efficiency perovskite solar cells,” Chem. Rev., vol. 120, no. 15, pp. 7867–7918, 2020. doi: 10.1021/acs.chemrev.0c00107
[2]          N. J. Jeon, J. Noh, W. Yang et al., “Compositional engineering of perovskite materials for high-performance solar cells,” Nature, vol. 517, no. 7535, pp. 476–480, 2015. doi: 10.1038/nature14133
[3]          M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395–398, 2013. doi: 10.1038/nature12509
[4]          H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song et al., “Interface engineering of highly efficient perovskite solar cells,” Science., vol. 345, no. 6196, pp. 542–546, 2014. doi: 10.1126/science.1254050
[5]          L. Qiu, S. He, L. K. Ono, and Y. Qi, “Progress of surface science studies on ABX3‐based metal halide perovskite solar cells,” Adv. Energy Mater., vol. 10, no. 13, p. 1902726, 2020. doi: 10.1002/aenm.201902726
[6]          S. Jarin, Y. Yuan, M. Zhang, M. Hu, M. Rana, S. Wang, R. Knibbe, “Predicting the crystal structure and lattice parameters of the perovskite materials via different machine learning models based on basic atom properties,” Crystals, vol. 12, no. 11, p. 1570, 2022. doi: 10.3390/cryst12111570
[7]          Y. Tang, Z. Gu, C. Fu, Q. Xiao, S. Zhang, et al., “FAPbI3 Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization,” Sol. RRL, vol. 6, no. 6, p. 2200120, 2022. doi: 10.1002/solr.202200120
[8]          Z. Li, F. Zhou, Q. Wang, L. Ding, and Z. Jin, “Approaches for thermodynamically stabilized CsPbI3 solar cells,” Nano Energy, vol. 71, p. 104634, 2020. doi: 10.1016/j.nanoen.2020.104634
[9]          A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, 2009. DOI:10.1021/ja809598r
[10]        J.J. Yoo, G. Seo, M.R. Chua, et al., “Efficient perovskite solar cells via improved carrier management,” Nature, vol. 590, no. 7847, pp. 587–593, 2021. doi: 10.1038/s41586-021-03285-w
[11]        M. Pandey et al., “Deposition of reduced graphene oxide thin film by spray pyrolysis method for perovskite solar cell,” arXiv Prepr. arXiv2212.01066, 2022. doi: 10.3126/jnphyssoc.v7i3.42193
[12]        S. Motevasel, S. Olyaee, M. Seifouri, “Investigation and numerical analysis of the effect of size, distance, position, and composition of plasmonic nanostructures on the absorption of perovskite solar cells,” Applied Electromagnetism; Biannual Scientific Journal, vol. 8, no. 2, pp. 45–51, 2020 [in persian]. dor: 20.1001.1.26455153.1399.8.2.6.8
 
[14]        E. Ghahremanirad, S. Olyaee, B. A. Nejand, V. Ahmadi, and K. Abedi, “Hexagonal array of mesoscopic HTM‐based perovskite solar cell with embedded plasmonic nanoparticles,” Phys. Status Solidi, vol. 255, no. 3, p. 1700291, 2018. doi: 10.1002/pssb.201700291
[15]        E. Ghahremanirad, S. Olyaee, and M. Hedayati, “The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cells,” in Photonics, vol. 6, no. 2, 37, 2019. doi: 10.3390/photonics6020037
[16]        E. Ghahremanirad, S. Olyaee, B. A. Nejand, P. Nazari, V. Ahmadi, and K. Abedi, “Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network,” Sol. Energy, vol. 169, pp. 498–504, 2018. doi: 10.1016/j.solener.2018.05.012
[17]        S. Lie, A. Bruno, L. H. Wong, and L. Etgar, “Semitransparent perovskite solar cells with> 13% efficiency and 27% transperancy using plasmonic Au nanorods,” ACS Appl. Mater. Interfaces, vol. 14, no. 9, pp. 11339–11349, 2022. doi: 10.1021/acsami.1c22748
[18]        Z. Liu et al., “Improving efficiency and stability of colorful perovskite solar cells with two-dimensional photonic crystals,” Nanoscale, vol. 12, no. 15, pp. 8425–8431, 2020, doi: 10.1039/d0nr00459f.
[19]        M. Lobet et al., “Efficiency enhancement of perovskite solar cells based on opal-like photonic crystals,” Opt. Express, vol. 27, no. 22, pp. 32308–32322, 2019. doi: 10.1364/OE.27.032308
[20]        D. H. Choi, S. K. Nam, K. Jung, and J. H. Moon, “2D photonic crystal nanodisk array as electron transport layer for highly efficient perovskite solar cells,” Nano Energy, vol. 56, pp. 365–372, 2019. doi: 10.1016/j.nanoen.2018.11.050
[21]        L. Hasanah et al., “Dimensional optimization of tio2 nanodisk photonic crystals on lead iodide (MAPBI3) perovskite solar cells by using fdtd simulations,” Appl. Sci., vol. 12, no. 1, p. 351, 2022, doi: 10.3390/app12010351.
[22]        J. Liu, M. Yao, and L. Shen, “Third generation photovoltaic cells based on photonic crystals,” J. Mater. Chem. C, vol. 7, no. 11, pp. 3121–3145, 2019. DOI: 10.1039/C8TC05461D
[23]        K. Xie, M. Guo, and H. Huang, “Photonic crystals for sensitized solar cells: fabrication, properties, and applications,” J. Mater. Chem. C, vol. 3, no. 41, pp. 10665–10686, 2015. DOI: 10.1039/c5tc02121a
[24]        R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. DOI: 10.1126/science.1058847
[25]        C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett., vol. 77, no. 14, p. 2949, 1996. doi: 10.1103/PhysRevLett.77.2949
[26]        W. Liu, H. Ma, and A. Walsh, “Advance in photonic crystal solar cells,” Renew. Sustain. Energy Rev., vol. 116, p. 109436, 2019, doi: 10.1016/j.rser.2019.109436.
[27]        D. I. Kim et al., “Enhancing the optical properties using hemisphere TiO2 photonic crystal as the electron acceptor for perovskite solar cell,” Appl. Surf. Sci., vol. 487, pp. 409–415, 2019. doi: 10.1016/j.apsusc.2019.05.092
[28]        M. Lobet et al., “Opal-Like photonic structuring of perovskite solar cells using a genetic algorithm approach,” Appl. Sci., vol. 10, no. 5, p. 1783, 2020. doi: 10.3390/app10051783
 
[29]        N. Daem et al., “Inverse Opal Photonic Nanostructures for Enhanced Light Harvesting in CH3NH3PbI3Perovskite Solar Cells,” ACS Appl. Nano Mater., vol. 5, no. 9, pp. 13583–13593, 2022, doi: 10.1021/acsanm.2c03274.
[30]        Y. Bao, D. Wang, W. Hui, L. Gu, L. Chao, and L. Song, “Honeycomb-Type TiO2 Films Toward a High Tolerance to Optical Paths for Perovskite Solar Cells,” ChemSusChem, vol. 16, no. 2, p. e202201749, 2023, doi: 10.1002/cssc.202201749.
[31]        C. R. Osterwald and T. J. McMahon, “History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review,” Prog. Photovoltaics Res. Appl., vol. 17, no. 1, pp. 11–33, 2009. doi: 10.1002/pip.861