[1] B. Bilgin and A. Emadi, “Electric motors in electrified transportation: A step toward achieving a sustainable and highly efficient transportation system,” IEEE Power Electron. Mag., vol.1, no.2, pp.10–17, Jun.2014.
[2] E. Bostanci, et al.: ‘Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study’, IEEE Trans. Transp. Electrif., vol.3, no.1, pp. 58–75, 2017.
[3] M. Castano, B. Bilgin, E. Fairall, and A. Emadi , “Acoustic Noise Analysis of a High-Speed High-Power Switched Reluctance Machine: Frame Effects,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 69-77, March 2016.
[4] M. Michon, S. D. Calverley, K. Atallah, “Operating strategies of switched reluctance machines for exhaust gas energy recovery systems,” IEEE Trans Ind. Appl., vol. 48, no. 5, pp.1478–1486, 2012.
[5] G. Li, J. Ojeda, S. Hlioui, E. Hoang, M. Lecrivain and, M. Gabsi, “Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating,” IEEE Trans. Magn., vol. 48, no. 6, pp. 2025–2034, 2012.
[6] J. O. Fiedler, K. A. Kasper, and R. W. D. Doncker, “Calculation of the Acoustic Noise Spectrum of SRM Using Modal Superposition,” IEEE Trans Ind. Appl., vol. 57, no. 9, pp. 2939–2945, 2010.
[7] S. E. Emami, S. Taghipour Boroujeni, N. Takorabet, “Fast prediction of unbalanced magnetic pull in PM machines,” Elec. Eng., vol. 103, pp.2595-2602, 2021
[8] X. Guo, R. Zhong, M. Zhang, D. Ding, and W. Sun, “Computation of Radial Vibration in Switched Reluctance Motors,” IEEE Trans Ind. Appl., vol. 65, no. 6, pp. 4588–4598, 2018.
[9] J. Dong, et al. “Hybrid acoustic noise analysis approach of conventional and mutually coupled switched reluctance motors”, IEEE Trans. Energy Convers., vol. 32, no.3, pp. 1042–1051, 2017.
[10] X. Liang, et al., “Comparative study of classical and mutually coupled switched reluctance motors using multiphysics finite-element modelling”, IEEE Trans. Ind. Electron. Vol. 61, no.9, pp. 5066–5074, 2014
[11] J. P. Lecointe, et al., “Analysis and active reduction of vibration and acoustic noise in the switched reluctance motor”, IEE Proc., Electr. Power Appl., vol. 151, no. 6, pp. 725–733, 2004
[12] J. Y. Chai, Y. W. Lin, C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor”, IEE Proc., Electr. Power Appl., vol. 153, no.3, pp. 348–360, 2006.
[13] D. Torregrossa, B. Fahimi, F. Peyraut, and A. Miraoui, “Fast computation of electromag
[14] netic vibrations in electrical machines via field reconstruction method and knowledge of mechanical impulse response,” IEEE Trans. Ind. Electron., vol. 59, no.2, pp.839–847, 2012.
[15] X. Q. Guo, R. Zhong, D. S. Ding, M. S. Zhang, W. J. Shao, and W. F. Sun, “Origin of resonance noise and analysis of randomizing turn on angle Method in switched reluctance motor,” IET Elect. PowerAppl., vol.11, pp.1324–1332, 2017.
[16] X. Q. Guo, R. Zhong, L. P. Zhao, J. Yin, and W. F. Sun, “Method for radial vibration modelling in switched reluctance motor,” IET Elect. Power Appl.,vol. 10, pp.834–842, 2016.