بررسی اثرات گرمایی در برهم‌کنش لیزر نانوثانیه با فلز طلا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه سمنان، سمنان، ایران

2 استادیار، دانشگاه سمنان، سمنان، ایران

3 دانشیار دانشگاه سمنان، سمنان، ایران

چکیده

امروزه برهم‌کنش باریکه­های لیزری با مواد در گستره وسیعی از کاربردهای روزانه، صنعتی، علمی و پزشکی موردتوجه قرار دارد. در این مقاله برهم‌کنش تک پالس هارمونیک دوم لیزر پالسی نانوثانیه Nd-YAG با فلز طلا مورد بررسی قرار می­گیرد تا شناخت بهتری از مبانی برهم‌کنش باریکه لیزری با فلزات حاصل شود و شرایط مناسب برای تابش لیزر مورد ارزیابی قرار گیرد. شبیه­‌سازی‌ها با حل معادلة درجه دوم گرما در سه بعد با روش تعمیم‌یافته تفاضل محدود حوزه زمان (G-FDTD) و با استفاده از زبان برنامه­نویسی فرترن انجام شده است. خصوصیات فلز مانند ضریب هدایت گرمایی طلا و ظرفیت گرمایی ویژة آن در مدل­سازی به‌صورت تابع دما در نظر گرفته شده است تا نتایج به واقعیت نزدیک‌تر شوند. بررسی­ها نشان می­دهد که انرژی هر پالس لیزر، پهنای زمانی پالس لیزر و شعاع باریکة لیزری بر توزیع دما در سطح و عمق فلز طلا و نیز بر ناحیه تحت‌تأثیر گرما مؤثر هستند و بیشینه دما با افزایش انرژی هر پالس رابطه مستقیم دارد؛ ولی با پهنای زمانی پالس و نیز اندازه لکه لیزری رابطه معکوس دارد. همچنین، بیشینه دما نسبت به قله پالس لیزری تأخیر زمانی دارد و این تأخیر با پهنای زمانی پالس رابطه مستقیم و خطی نشان می­دهد. علاوه بر این، در این مقاله، وابستگی آستانة ذوب طلا به مشخصه­های تابش لیزر مثل اندازه لکه لیزری، پهنای خط و شار انرژی لیزر مورد بررسی قرار می­گیرد تا نقشة کلی برای کاربران برای دستیابی به شرایط ذوب با تابش تک پالس هارمونیک دوم لیزر پالسی نانوثانیه Nd-YAG فراهم شود.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the thermal effects of nanosecond Nd: YAG laser -gold metal interactions ‎

نویسندگان [English]

  • Nader Javanmard 1
  • Maryam Aliannezhadi 2
  • Maryam Aliannezhadi 3
1 PhD student, Semnan University, Semnan, Iran
2 Assistant Professor, Semnan University, Semnan, Iran
3 Associate Professor, Semnan University, Semnan, Iran
چکیده [English]

Today, the interaction of laser beams with materials has a wide range of interests in daily, industrial, scientific, and medical applications. In the paper, the interaction of a single nanosecond pulse of a second harmonic Nd-YAG laser with gold metal is investigated to obtain a more comprehensive understanding of the basics of laser beam interaction with metals and to evaluate the appropriate conditions for laser radiation. The simulations were done by solving the quadratic equation of heat in three dimensions with the Generalized Finite Difference Time Domain (G-FDTD) method using Fortran programming language. Also, metal properties such as the thermal conductivity and specific heat capacity of gold are considered as a function of temperature in the model so that the results are closer to reality. The results indicate that the energy per pulse and linewidth of the laser pulse and also the spot size of the laser beam have a significant effect on the distribution of temperature on the surface and depth of the gold and also on the heat-affected zone (HAZ). Indeed, the maximum temperature is directly related to increases in energy per pulse. While it shows an inverse relationship between the time linewidth of the laser pulse and the spot size of the laser beam. Also, the time of maximum temperature has a delay compared to the peak of the laser pulse, and this delay time shows a direct and linear relationship with the linewidth of the laser pulse. In addition, the dependences of the gold melting threshold to characteristic parameters of the laser including laser spot size, laser linewidth, and laser fluences are studied in the paper to provide a general map for users to achieve melting of the gold by exposing the nanosecond pulse of second harmonic Nd-YAG laser.

کلیدواژه‌ها [English]

  • Nanosecond pulsed laser
  • Linewidth of the laser pulse
  • laser-gold interaction
  • Generalized Finite Difference Time Domain (G-FDTD) method

Smiley face

[1].    P. Malik, J. N. Acharyya, M. Shanu, A. Kuriakose, S. Ghosh, P. Srivastava, and G. V. Prakash, "Studies on Femtosecond Laser Textured Broadband Anti-reflective Hierarchical a-SiNx: H Thin Films for Photovoltaic Applications," ACS Applied Energy Materials .10.1021/acsaem.2c03984, 2023.
[2].      J. Bonse and J. Krüger, "Structuring of thin films by ultrashort laser pulses," Applied Physics A, vol. 129, no. 1, p. 14. 10.1007/s00339-022-06229-x ,2023.
[3].      M. Aliannezhadi, M. H. Mozaffari, and F. Amirjan, "Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing," Photonics and Nanostructures-Fundamentals and Applications, vol. 53, p. 101108.10.1016/j.photonics2023.101108.
[4].      S. Song et al., "A critical review on the simulation of ultra-short pulse laser-metal interactions based on a two-temperature model (TTM)," Optics & Laser Technology, vol. 159, p. 109001.101016/j.optlastec. 2022.109001,2023.
[5].    J. Khalilzadeh, A. Arab Khorasani, H. Zaki Dizaji, and Y. Shahamat, "Design of a Hybrid Enhanced Photocathode Based on Plasmonic Nano-Grating,", Scientific Journal of Applied Electromagnetics, vol. 9, no. 2, pp. 27-33, 2021.(in Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455153.1400.9.2.4.3
[6].    A. Riahi, M. Heydari-Dayeni, m. vahedi, J. Khalilzadeh, and y. shahamat, "Simulation and Fabrication of Tapered Fiber Optics Hydrogen Sensor," Scientific Journal of Applied Electromagnetics, vol. 6, no. 1, pp. 15-21, 2018.(in Persian) .DOR: https://dor.isc.ac/dor/20.1001.1.26455153.1397.6.1.3.9
[7].    F. Damavandi Kamali, A. Ebrahimzadeh, and M. Yazdi, "Calculation of Attenuation in Rain Medium with Realistic Rain drops Shapes Modeling by the FDTD Method," Scientific Journal of Applied Electromagnetics, vol. 8, no. 1, pp. 1-7, 2020.(in Persian) .DOR: https://dorl.net/dor/20.1001.1.26455153.1399.8.1.1.1
            
[8].    M. Aliannezhadi, F. Shahshahani, and V. Ahmadi, "Analysis of Raman QWS-DFB Fiber Laser Considering Nonlinear SPM and XPM Effects," Scientific Journal of Applied Electromagnetics, vol. 2, no. 4, -, p. 5, 2015(inPersian).DOR: https://dorl.net/dor/20.1001.1.26455153.1393.2.4.6.0
[9].      V. Dimitriou, E. Kaselouris, Y. Orphanos, M. Bakarezos, N. Vainos, M. Tatarakis, and N. Papadogiannis, "Three dimensional transient behavior of thin films surface under pulsed laser excitation," Applied Physics Letters, vol. 103, no. 11, p. 114104, 10.1063/1.4821274,2013.
[10].   X. Li and Y. Guan, "Theoretical fundamentals of short pulse laser–metal interaction: A review," Nanotechnology and Precision Engineering, vol. 3, no. 3, pp. 105-125.10.1016/j.npe.2020.08.001, 2020.
[11]. Y. Zhang, D. Zhang, J. Wu, Z. He, and X. Deng, "A thermal model for nanosecond pulsed laser ablation of aluminum," AIP Advances, vol. 7, no. 7.10.1063/1.4995972, 2017.
[12].   N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, "A finite element model to predict the ablation depth in pulsed laser ablation," Thin Solid Films, vol. 519, no. 4, pp. 1421-1.10.1016/j.tsf.2010.09.016,2010
[13]. E. Matthias et al., "The influence of thermal diffusion on laser ablation of metal films," Applied Physics A, vol. 58, pp. 129-136.10.1007/BF00332169, 1994.
[14].   F. Ruffino and M. G. Grimaldi, "Nanostructuration of thin metal films by pulsed laser irradiations: a review," Nanomaterials, vol. 9, no. 8, p. 1133.10.3390/nano908
[15]. E. G. Gamaly, Femtosecond laser-matter interaction: theory, experiments and applications. CRC Press, 2011.
[16]. M. Stafe, A. Marcu, and N. N. Puscas, Pulsed laser ablation of solids: basics, theory and applications. Springer Science & Business Media, 2013.
[17].   A. V. Gusarov and I. Smurov, "Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer," Journal of applied physics, vol. 97, no. 110.1063/1.1827321, 2005.
[18]. I. Naqavi and B. Yilbas, "Laser nanosecond pulse heating of surfaces and thermal stresses," Numerical Heat Transer, Part A Applications, vol. 40, no. 3, pp. 295-316.10.1080/10407782.2001.10120638, 2001.
[19]. D. Bäuerle, Laser processing and chemistry. Springer Science & Business Media, 2013.
[20]. M. Sovizi and M. K. Omrani, "Simulation and analysis of ultra-small optical microdisk resonators with random edge roughness: modification of the matrix model," Physica Scripta, vol. 93, no. 11, p. 115501.10.1088/1402-4896/aad740, 2018.
[21]. M. Sovizi and R. Massudi, "Thermal distribution calculation in diode pumped Nd: YAG laser rod by boundary element method," Optics & Laser Technology, vol. 39, no. 1, pp. 46-52.10.1016/j.optlastec.2005.05.010, 2007.
[22]. K. A. Elsayed et al., "Thermal, dielectric and optical studies on cellulose acetate butyrate-gold nanocomposite films prepared by laser ablation," Journal of Materials Research and Technology, vol. 23, pp. 419-437.10.1016/j.jmrt.2023.01.012, 2023.
[23].   M. Shah, K. Zeng, and A. A. Tay, "Mechanical characterization of the heat affected zone of gold wirebonds using nanoindentation," J. Electron. Packag., vol. 126, no. 1, pp. 87-93.10.1115/1.1648062, 2004.