بهینه‌سازی گشتاور دندانه در موتورهای آهنربایی سطحی به روش چند تکه کردن قطب‌های آهنربا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده فنی و مهندسی دانشگاه شهرکرد

2 دانشجوی کارشناسی ارشد، دانشکده فنی و مهندسی دانشگاه شهرکرد

چکیده

در این مقاله از روش چند تکه­کردن آهنربا برای کاهش گشتاور دندانه موتورهای آهنربای سطحی استفاده شده است. در این روش هر قطب مغناطیسی با چند تکه­کردن به چند بلوک تقسیم می­شود. چند تکه­کردن به دو طریق، یکی با اندازه تکه­های برابر و دیگری با اندازه تکه­های نابرابر انجام شده است. در هر دو روش تقارن نیم موج فرد در قطب­های آهنربایی ماشین لحاظ شده است. با انتخاب مناسب طول هر بلوک آهنربایی و موقعیت آن می­توان چگالی شار فاصله هوایی را تغییر و به تبع آن گشتاور دندانه را به مقدار قابل ملاحظه­ای کاهش داد. طول و موقعیت مناسب هر تکه آهنربا با استفاده از الگوریتم ژنتیک به­دست آمده­است. در این مقاله یک مدل تحلیلی برای در نظر گرفتن اثر شکل آهنربا در چگالی شار فاصله هوایی ماشین آهنربایی شیاردار و گشتاور دندانه ارایه شده است. در این مدل چگالی شار فاصله­ هوایی از حل رابطه‌ پواسون با در نظرگرفتن جریان‌های مجازی دیواره‌های دندانه‌های استاتور و گشتاور دندانه از رابطه تنش ماکسول به دست آمده است. از این مدل به­عنوان ابزار محاسباتی در تمامی مراحل بهینه‌سازی استفاده شده است. درستی مدل تحلیلی ارایه شده توسط روش اجزای محدود تایید شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Cogging Torque in Surface Mounted PM Machines using PM Segmetation

چکیده [English]

In this paper, the segmentation method is used to reduce cogging torque in the surface-mounted permanent
magnet machines. In this method the magnet pole is divided into several magnet blocks. The permanent magnet
is segmented in two ways, equal- and  unequal- size permanent magnet blocks. In the both methods the half-wave
symmetry of the magnetic poles is applied. The dimension of the permanen t magnet s is optimiz ed to reduce the
machine cogging torque using an analytical model combined with the genetic al gorithm. The effect  of the slotted
armature is taken into account in the analytical model. The  cogging torque is obtained from the air gap
magnetic flux components and the Maxwell’s stress tensor. The mo del is obtained by solving the Poisson’s
equation. This model is used as a fast tool to compu te the objective function in the ge netic algorithm. In addition,
the validity of the proposed model is verified with  finite element  analysis.  
 

کلیدواژه‌ها [English]

  • Surface PM machines
  • Cogging torque
  • Gen etic Algorithms
  • Analytical modeling
  • Finite element method
[1]  N. Bianchi and S. Bolognani, “Design Techniques for
Reducing the Cogging Torque in Surface-Mounted PM
Motors,” IEEE Trans. Ind., Appl. vol. 38, no. 5, pp.          
1259-1265,  Sep./Oct. 2002. ##
 
[2]  Z. Q. Zhu and D. Howe, “Influence of Design Parameters
on Cogging   Torque In Permanent Magnet Machines,” IEEE
Trans. Energy Convers.,   vol. 15, no. 4, pp. 407-412, Dec.
2000. ##
 
[3]  R. Lateb, N. Takorabet, and F. Meibody- Tabar, “Effect of
Magnet Segmentation on the Cogging Torque in Surface-Mounted Permanent-Magnet Motor,” IEEE Trans. Magn.,
vol. 42, no. 3, pp. 442-445, Mar. 2006. ##
 
[4]  L. Zhu, S. Z. Jiang, Z.Q. Zhu, and C.C. Chan, “Analytical
Methods for Minimizing Cogging Torque in Permanent-Magnet Machines,” IEEE Trans. Magn., vol. 45, no. 4, pp.
2023-2031, Apr. 2009. ##
 
[5]  T. M.   Jahns and W. L. Soong, “Pulsating torque
minimization techniques for permanent magnet AC motor
drives- a review,” IEEE Trans. on Ind. Electron., vol. 43, no.
2, pp. 321-330, Apr. 1996 . ##
[6]  D. C. Hanselman, “Effect of skew, pole coun t and slot
count on brushless motor radial force, cogging torque and
back EMF,” IEE Proceedings. Power Appl., vol. 144, no. 5,
pp. 325-330, Sep. 1997. ##
[7]  M. S. Islam, S. Mir, and T. Sebastian, “Issues in reducing
the cogging torque of mass-produced permanent-magnet
brushless DC motor,” IEEE Trans. Ind. Appl., vol. 40, no.
3, pp. 813 –820, May/Jun. 2004. ##
[8]  M. Dai, A. Keyhani, and T. Sebastian, “Torque ripple
analysis of a PM brushless DC motor using finite element
method,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp.
40-45, Mar. 2004. ##
[9]  S. M. Hwang, J. B. Eom, Y. H. Jung, D. W. Lee, and B. S.
Kang, “Various design techniques to reduce cogging torque
by controlling energy variation in permanent magnet
motors,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2806-2809,
Jul. 2001.  ##
[10]   S. M. Hwang, J. B. Eom, G. B. Hwang, W. B. Jeong, and
Y. H. Jung, “Cogging torque and acoustic noise reduction
in permanent magnet motors by teeth pairing,” IEEE Trans.
Magn., vol. 36, no. 5, pp. 3144-3146, Sep. 2000. ##
[11]   S. Chaithongsuk, N. Takorabet, and F. Meibody-Tabar, “On
the Use of Pulse Width Modulation Method for the
Elimination of Flux Density Harmonics in the Air-Gap of
Surface PM Motors,” IEEE Trans. Magn., vol. 45, no. 3,
pp. 1736-1739, Mar. 2009. ##
[12]   S. T. Boroujeni and V. Zamani, “A Novel Ana lytical Model
for No-Load, Slotted, Surface-Mounted PM Machines: Air
gap Flux Density and Cogging Torque,” IEEE Trans.
Magn., vol. 51, no. 4, pp. 8104-8108, Apr. 2015. ##
 
[13]   M. Ashabani and Y. A. I. Mohamed, “Multiobjective shape
optimization of segmented pole permanent-magnet
Synchronous machines with improved torque
characteristics,”  vol. 47, no. 4, pp. 795 -804, Apr. 2011. ##
[14]   M. S. Islam, S. Mir, T. Sebastian, and S. Underwood,
“Design considerations of sinusoidally excited permanent -magnet machines for low  torque- ripple applications,” IEEE
Trans. Ind. Appl., vol. 41, no. 4, pp. 955 – 962, Jul./Aug.
2005. ##
 
[15]   M. Y. Kim, Y. C. Kim, and G. T. Kim, “Design of slotless-type PMLSM for high power density using divided PM,”
IEEE Trans. Magn., vol. 40, no. 2, pp. 746 –749, Mar. 2004. ##
 
[16]   A. H. Isfahani, “Analytical framework for thrust
enhancement in permanent magnet (PM) linear
synchronous motors with segmented PM poles,” IEEE
Trans. Magn., vol. 46, no. 4, pp. 1116– 1122, Apr. 2010.  ##
[17]   W. Y. Huang, A. Bettayeb, R. Kaczmarek, and J. C.
Vannier, “Optimization of magnet segmentation for
reduction of eddy-current losses in permanent magnet
synchronous machines,” IEEE Trans. Energy Convers., vol.
25, no. 2, pp. 381 –387, Jun. 2010##