مدل عدم هم‌ترازی سیم پیچ در سیستم انتقال توان بی‌سیم در ایستگاه شارژ خودرو برقی

نویسندگان

صنعتی مالک اشتر

چکیده

امروزه جایگزینی خودروهای بنزین­سوز با خودروهای برقی و اتصال آن­ها به منبع انرژی الکتریکی، باعث شده ­است تا برنامه­ریزی برای استفاده بهینه از این منبع ذخیره­ساز انرژی، بیش از پیش احساس ­شود. لذا شارژ باتری این­گونه خودروها امری ضروری به­نظر می­رسد. در این مقاله بهینه‌سازی بازده سامانه انتقال توان بی‌سیم القایی، برای شارژ خودرو­های ­الکتریکی ارائه ­شده ­است. در این سامانه معمولاً سیم‌پیچ گیرنده انرژی به­صورت انتقالی و وضعی با سیم‌پیچ فرستنده، عدم هم‌ترازی دارد که این عدم هم­ترازی در بازده انتقال تاثیر­گذار است. از این­رو، در این مقاله اندوکتانس متقابل بین دو سیم‌پیچ فرستنده و گیرنده در شرایط مختلف فیزیکی با روش عددی گوس سه نقطه­ای تعمیم­یاقته ارائه شده و شبیه‌سازی‌ها نشان می‌دهد که یک راه‌حل بهینه نسبی برای حالت‌های عدم هم‌ترازی انتقالی و وضعی جهت بیشنه نمودن انتقال توان به بار وجود دارد و هرچه اندوکتانس متقابل بزرگ‌تر باشد، بازده انتقال توان نیز بیش­تر خواهد بود. نشان داده می­شود که تغییر وضعی در شرایط عدم هم‌ترازی انتقالی، می‌تواند  بازده انتقال را بیشینه نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Wireless Power Transfer in Coupled Links: Coil Misalignment Model for Electric Cars

چکیده [English]

A  design  procedure  is  established  to  maximize  coil  coupling  for  a  given  configuration  to  reduce  the  effects  of
misalignment  on  transmission  efficiency.  Formulas  are  derived  for  the  mutual  inductance between  all  possible
coil  configurations  including  the  coils  of  the  cross  section,  thin  solenoids,  Pancakes  and  filamentary  circular
coils  whose  axes  are  laterally  and  angularly  displaced.  Coils  are  in  air.  In  this  approach  we  use  the  filament
method  and  the  mutual  inductance  between  filamentary  circular  coils  placed  in  any  desired  positions.  We
completely describe all mathematical procedures to define coil positions that lead to a relatively easy method for
calculating  the  mutual  inductance  between  previously  mentioned  coils.  The  practical  coils  in  implantable
devices  fall  into  two  categories:  disk  coils  and  solenoid  coils.  From  the  general  approach  for  calculating  the
mutual  inductance  between  coils  of  the  rectangular  cross  section  with  lateral  and  angular misalignments,  the
mutual inductance between misalignment solenoids and disks will be calculated easily and accurately.

کلیدواژه‌ها [English]

  • Wireless Power Transfer
  • Coil Misalignment
  • Smart Grid
[1]     V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, “Smart Grid Technologies: Communication Technologies and Standards,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529 –539, Nov. 2011.##
[2]     Jang,Y.and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers”, IEEE Trans. Industrial Electro., Vol. 50, No. 3, 520-527, 2003.##
[3]     V. C. Gungor and D. Sahin, “Cognitive Radio Net works for Smart Grid Applications: A Promi sing Technology to Overcome Spectrum Inefficiency,” IEEE Vehicular Technology Magazine, vol. 7, no. 2, pp. 41 –46, Jun. 2012.##
[4]     Jung, K. H., Y. H. Kim, J. Kim, and Y. J. Kim, “Wireless power transmission for implantable devices using inductive component of closed magnetic circuit”, Electro. Letters, Vol. 45, No. 1, 21-22, 2009.##
[5]     S. Y. R. Hui, Wenxing Zhong, and C. K. Lee. “A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer, ” IEEE Transactions on Power Electronics, Vol. 29, No. 9, September 2014.##
[6]     Yu, C. L., R. G. Lu, Y. H. Mao, L. T. Ren, and C. B. Zhu, “Research on the model of magnetic-resonance based wireless energy transfer system”, IEEE Vehicle Power and Propulsion Conference, 414-418, Dearborn, MI, Sep. 2009.##
[7]     A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljačić, “Wireless Power Transfer  via Strongly Coupled Magnetic Resonances,” Science,Vol. 317 , pp. 83-86, 2007.##
[8]     W. Kempton., J. Tomic., “Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy,” Journal of Power Sources, Vol. 144, Issue 1, pp. 280-294,Jun. 2005.##
[9]     M. Ferdowsi, “Plug-in electric drive vehicles: experiences in research and education,” in Proc. IEEE Power Engineering Society General Meeting, Pittsburgh, PA, July 2008.##
[10]  Siqi Li, and Chunting Chris Mi, “Wireless Power Transfer for Electric Vehicle Applications”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, March 2015.##
[11]  C. Gao and M. A. Redfern, “A Review of Voltage Control in Smart Grid and Smart Metering Technologies on Distribution Networks,” Universities’ Power Engineering Conference (UPEC), Proceedings of 2011 46th International, pp. 1 –5, Sep. 2011.##
[12]  Wenxing Zhong, Chi Kwan Lee, S. Y. Ron Hui. “General Analysis on the Use of Tesla’s Resonators in Domino Forms for Wireless Power Transfer”. IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, January 2013.##
[13]  J. Meins, “Contactless inductive power supply,” Magnetically Levitated Systems and Linear Drives, Proc. MAGLEV, 2006, pp.1-9, 2006.##
[14]  Tan, L. L., X. L. Huang, H. Huang, Y. W. Zou, and H. Li, “Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control”, Sci. China Tech. Sci., Vol. 54, No. 6, 1428-1434, 2011.##
[15]  Fu, W. Z., B. Zhang, D. Y. Qiu, and W. Wang, “Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system”, Proceedings of the CSEE, Vol. 19, No. 18, 21-26, 2009.##
[16]  Fotopoulou, K. and B. W. Flynn, “Wireless power transfer in loosely coupled links: Coil misalignment model”, IEEE Trans. Magn., Vol. 47, No. 2, 416-430, 2011.##
[17]  Tremblay O, Dessaint L-“A Experimental validation of a battery dynamic model for EV applications. In: EVS24 international battery, hybrid and fuel cell electric vehicle”, symposium,Stavanger, Norway, 13–16 May 2009.##