[1] J. Wang, Shiyuan Yang, J. Wang, H. He, Y. Xiong, and F. Chen, “Phase, crystal struture and sintering behavior of shock-synthesized Pb(Zr0.95Ti0.05)O3 powders,” Solid State Sciences, vol. 12, pp. 2054-2058. 2010.##
[2] B. A. Tuttle, P. Yang, J. H. Gieske, J. A. Voigt, T. W. Scofield, D. H. Zeuch, and W. R. Olson, “Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics,” American Ceramic Society, , vol. 84, pp. 1260–1264. 2001.##
[3] T. Zeng, X. L. Dong, C. L. Mao, Z. Y. Zhou, and H. Yang, “Effects of pore shape and porosity on the properties of porous PZT95/5 ceramics,” European Ceramic Society, vol. 27, pp. 2025–2029, 2007.##
[4] D. A. Hall, J. D. S. Evans, S. J. Covey-Crump, R. F. Holloway, E. C. Oliver, T. Mori, and P. J. Withers, “Effects of superimposed electric field and porosity on the hydrostatic pressure-induced rhombohedral to orthorhombic martensitic phase transformation in PZT95/5 ceramics,” Acta Materialia, vol. 58, pp. 6584–6591, 2010.##
[5] J. F. Li, T. Kenta, O. Masaru, P. Wei, and W. Ryuzo, “Fabrication and evaluation of porous piezoelectric Ceramics and porosity-graded piezoelectric actuators,” American Ceramic Society, vol. 86, pp. 1094–1098, 2003.##
[6] S. I. Shkuratov, J. Barid, and E. F. Talantsev, “Extension of thickness-dependent dielectric breakdown law on adiabatically compressed ferroelectric materials,” Applied physics letters, vol. 102, 2013.##
[7] S. I. Shkuratov, J. Barid, E. F. Talantsev, W. S. Hackenberger, A. H. Stults, and L. L. Altgilbers, “Miniature 100-KV explosively driven prime power sources based on transverse shock-wave depolarization of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics,” 978-1-4577-0631-8, 2011.##
[8] S. I. Shkuratov, J. Barid, and E. F. Talantsev, “Utilizing Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics to scale down autonomous explosive-driven shock-wave ferroelectric generators,” Scientific instruments, vol. 83, 2012.##
[9] S. I. Shkuratov, J. Barid, and E. F. Talantsev, “Miniature 120-KV autonomous generator based on transverse shock-wave depolarization of Pb(Zr0.95Ti0.05)O3 ferroelectrics,” Scientific instruments, 086107, vol. 82, 2011.##
[10] R. Tabarzadi, A. Aghaei, M. M. Mohebi, and A. Maghsudipor, “Piezoceramic Powder Synthesis PZT95 / 5-2Nb by One-Step and Two-Step Methods,” 11nd Ceramic Society of Iran, 2017.##
[11] M. Lallart, “Synthesis of PZT Ceramics by Sol-Gel Method and Mixed Oxides with Mechanical Activation Using Different Oxides as a Source of Pb,” Ferroelectrics – Material Aspects book, Chapter 16, ISBN 978-953-307-332-3 Published, August 24, 2011.##
[12] L. L. Altgilbers, J. Baird, B. L. Freeman, Ch. S. Lynch, and S. L. shkuratov, “Explosive pulsed power,” Imperical college press, vol. 1, p. 9, 2011.##
[13] S. I. Shkuratov1, E. F. Talantsev, and J. Baird, “Application of piezoelectric ceramics in pulsed power technology and engineering,” Piezoelectric Ceramics, vol. 14, p. 270, 2012.##
[14] E. F. Alberta, B. Michaud, and W. S. Hackenberger, “Development of ferroelectric materials for explosively driven pulsed-power systems,” TRS Technologies, book, ISBN: 978-1-4244-4064-1, DOI: 10.1109/PPC., 5386193, 2009.##
[15] R. N. Das and P. Pramanik, “In Situ Synthesis of Nanosized PZT Powders in the Precursor Material and the Influence of Particle Size on the Dielectric Property,” Nanostructured Materials, vol. 10, Issue 8, pp. 1371-1377, 1998.##