بهینه سازی فیلتر رنگی پلاسمونیکی برای حسگر تصویر برداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی ارشد برق الکترونیک دانشگاه علم وصنعت ایران

2 دانشیار دانشگاه علم وصنعت

چکیده

در این مقاله، فیلتر رنگی پلاسمونیکی شیاردار پشت و روی چشم گاوی برای کاربرد در حسگرهای تصویربرداری استاندارد سی‌ماس ارائه‌شده است. فیلتر پلاسمونیکی فیلم نازک ارائه‌شده از جنس نقره بوده و به کمک بهینه‌سازی الگوریتم ازدحام ذرات با اصلاح پارامترهای دوره‌ تناوب، زمان وظیفه، ضخامت بدنه، ارتفاع لایه‌ شبکه‌ای و قطر روزنه برای تصویربرداری مادون‌قرمز بهینه‌سازی شده است. این فیلتر پلاسمونیکی برای طول‌موج مرکزی nm 835 طراحی‌شده است که دارای بیشینه‌ بازدهی انتقال نور  8/36% و پهنا در نصف مقدار بیشینه nm 110 می‌باشد. از مزیت‌های این فیلتر می‌توان به قابلیت پیاده‌سازی با هزینه‌ پایین، نزدیک بودن به ناحیه‌ حساس به نور، کاهش هم‌شنوایی و عدم استفاده از پلیمرهای حساس به دما که برای کاربردهای با شرایط دمایی سخت مناسب است اشاره کرد. همچنین با تجزیه و تحلیل عملکرد این فیلتر پلاسمونیکی و مقایسه آن با فیلترهای نوری دارای طول‌موج مرکزی مشابه، به بررسی ویژگی پلاسمون سطحی با توزیع شدت میدان الکتریکی محلی پرداخته ‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing Plasmonic Color Filter for Imaging Sensor

نویسندگان [English]

  • K. Eyvazi 1
  • M. A. Karami 2
1
2
چکیده [English]

In this paper, a double-side bull’s eye plasmonic color filter used in complementary metal oxide semiconductor (CMOS) based standard imaging sensors is presented. The thin-film filter is silver-made and optimized by using a particle swarm algorithm in order to modify the corrugation period, duty cycle, film thickness, grating height and aperture diameter for infrared imaging. The filter is designed for central wavelength 835 nm, having the maximum transmittance of 38.6 % and the full width at half maximum (FWHM) of 110 nm. Inexpensive implementation, proximity to the sensitive region, reduced crosstalk and independence from              temperature-sensitive polymers, are some of the advantages of this filter, making it suitable for tough temperature conditions. Moreover, using functional analysis of this plasmonic filter and comparing it to the optical filters with similar central wavelength has led us to the investigation of surface plasmon features under a local electric field intensity distribution.

کلیدواژه‌ها [English]

  • Plasmonic Filter
  • Particle Swarm Algorithm
  • Infrared Imaging
[1]      E. R. Fossum, “CMOS Image Sensors: Electronic Camera on a Chip,” IEEE Trans. Electron Devices, Vol. 44,  No. 10, pp. 1689-1698, 1997.##
 
[2]      T. Kuroda, “Essential Principles Of Image Sensors”; CRC. press: Boca Raton, FL, 2014.##
 
[3]      P. M. Hubel, J. Liu, R. J. Guttosch, “Spatial Frequency Response of Color Image Sensors: Bayer Color Filters And Foveon X3,” Proc. SPIE, Vol. 5301, No. 1, pp. 402–407, 2004.##
 
[4]      P. A. Cheremkhin, V. V. Lesnichii, N. V. Petrov, “Use of Spectral Characteristics of DSLR Cameras with Bayer Filter Sensors,” Journal of Physics: Conference Series. 2014, 012021-5.##
 
[5]      T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, C. S. Wang, “Light Guide for Pixel Crosstalk Improvement in Deep Submicron CMOS Image Sensor,” IEEE Electron Device Lett., Vol. 25, No. 1, pp. 22–24, 2004.##
 
[6]      A. Tournier, F. Leverd, L. Favennec, C. Perrot, L. Pinzelli, D. Jeanjean, F. Hirigoyen, L. Grant “Pixel-to-Pixel Isolation by Deep Trench Technology : Application to CMOS Image Sensor,” In Proc. of the Int. conf on Image Sens, Vol. 5, No. 1, pp. 5–8, 2011.##
 
[7]      C. H. Koo, H. K. Kim, K. H. Paik, Y. K Park, C. R. Moon, S. H. Lee, J. T Kong, “ Improvement of Crosstalk on 5M CMOS Image Sensor with 1.7x1.7μm 2 Pixels ,” Ultrafast Phenom. Semicond. Nanostructure Mater. Semicond. Photodetectors IV, Vol. 6471, No. 1, pp. 6471151-8, 2007.##
 
[8]      Q. Chen, D. Das, D. Chitnis, K. Walls, T.D. Drysdale, S. Collins, D.R.S. Cumming, “A CMOS Image Sensor Integrated with Plasmonic Colour Filters,” Plasmonics, Vol. 7, No. 4, pp. 695–699, 2012.##
 
[9]      T. W. Martin and W. A. Light, “Fabrication and Performance of Color Filter Arrays for Solid- State Imagers,” IEEE Trans. Electron Devices, Vol. 2, No. 25, pp. 97-101, 1978.##
 
[10]   M. S. Mirotznik, “Photonic Crystal Filters for Multi-Band Optical Filtering on a Monolithic Substrate,” J. Nanophotonics, Vol. 3, No. 1, pp. 031506, 2009.##
 
[11]   P. Crystal, C. Filter, Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-Free MOS Image Sensor With,” IEEE Electron Device Lett., Vol. 27, No. 6, pp. 457–459, 2006.##
 
[12]   Y. T. Yoon, S. S. Lee, “Transmission Type Color Filter Incorporating a Silver Film Based Etalon,” Opt. Express, Vol. 18, No. 5, pp. 5344–5349, 2010.##
 
[13]   L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, J. Michailos, “Color Filters Including Infrared Cut-Off Integrated on CMOS Image Sensor,” Opt. Express, Vol. 19, No. 14, pp. 13073, 2011.##
 
[14]   Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, K. D. Lee, “Color Filter Incorporating a Subwavelength Patterned Grating in Poly Silicon,” Opt. Express, Vol. 16, No. 4, pp. 2374–80, 2008.##
 
[15]   Y. Kanamori, M. Shimono, K. Hane, “Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates,” IEEE Photonics Technol. Lett., Vol. 18, No. 20, pp. 2126–2128, 2006.##
 
[16]   H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, “Surface Plasmons Enhance Optical Transmission Through Subwavelength Holes,” Phys. Rev. B, Vol. 58, No. 11, pp. 6779–6782, 1998.##
 
[17]   G. Verhoeven, “Imaging The Invisible Using Modified Digital Still Cameras For Straightforward and Low-Cost Archaeological Near-Infrared Photography,” J. Archaeol. Sci., Vol. 35, No. 12, pp. 3087–3100, 2008.##
 
[18]   B. Schwarz, G. Ritt, M. Körber, and B. Eberle, “Laser-Induced Damage Threshold of Camera Sensors and Micro-Opto-Electro-Mechanical Systems,” Electro-Optical Infrared Syst. Technol. Appl. XIII, Vol. 9987, No. 3, pp. 99870D, 2016.##
 
[19]   E. I. L. Jull, H. F. Gleeson, “Tuneable and Switchable Liquid Crystal Laser Protection System,” Appl. Opt., Vol. 56, No. 29, pp. 8061-8066, 2017.##
 
[20]   A. S. Faraji, V. Ahmadi,“Enhanced Raman Amplification in Hybrid Photonic Crystal Based Waveguide Structure by Using Optofluidic Materials” Journal of App. Elect Vol. 4, No. 3, pp. 57-64, 2016. (in Persian)##
 
[21]   S. Pimenta, S. Cardoso, A. Miranda, P. De Beule, E. M. S. Castanheira, G. Minas, “Design and Fabrication of Sio2/Tio2 and Mgo/Tio2 Based High Selective Optical Filters for Diffuse Reflectance and Fluorescence Signals Extraction,” Biomed. Opt. Express, Vol. 6, No. 8, pp. 3084, 2015.##
 
[22]   M. J. Uddin, R. Magnusson, “Efficient Guided-Mode-Resonant Tunable Color Filters,” IEEE Photonics Technol. Lett., Vol. 24, No. 17, pp. 1552–1554, 2012.##
 
[23]   K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, S. Ura, “Cavity-Resonator-Integrated Guided-Mode Resonance Filter for Aperture Miniaturization,” Opt. Express, Vol. 20, No. 2, pp. 1444, 2012.##
 
[24]   L. Novotny, B. Hecht “Principles of Nano-Optics.”; Cambridge university press, 2012.##
 
[25]   S. M. R. Safaee, M. Janipour, M. A. Karami, “Modeling and Analysis of Optical Properties of a Gold Nanoring Based on Electric and Magnetic Dipoles,” Appl. Opt., Vol. 54, No. 28, pp. 8313, 2015.##
 
[26]   M. Janipour, M. A. Karami, R. Sofiani, F. H. Kashani, “A Novel Adjustable Plasmonic Filter Realization by Split Mode Ring Resonators,” J. Electromagn. Anal. Appl., Vol. 05, No. 12, pp. 405–414, 2013.##
 
[27]   A. V. Zayats, L. Salomon, F. De. Fornel, “How light gets through periodically nanostructured metal films: A role of surface polaritonic crystals,” J. Microsc., Vol. 210, No. 3, pp. 344–349, 2003.##
 
[28]   L. Salomon, F. Grillot, A. V. Zayats, F. De. Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett., Vol. 86, No. 6, pp. 1110–1113, 2001.##
 
[29]   W. C. Liu, D. P. Tsai, “Optical Tunneling Effect of Surface Plasmon Polaritons and Localized Surface Plasmon Resonance,” Phys. Rev. B, Vol. 65, No. 15, pp. 1–6, 2002.##
 
[30]   P. C. Li, Y. Zhao, A. Alu, E. T. Yu, “Experimental Realization and Modeling of a Subwavelength Frequency-Selective Plasmonic Metasurface,” Appl. Phys. Lett., Vol. 99, No. 22, pp. 221106, 2011.##
 
[31]   A. Degiron, H. J. Lezec, W. L. Barnes, T. W. Ebbesen, “Effects of Hole Depth on Enhanced Light Transmission Through Subwavelength Hole Arrays,” Appl. Phys. Lett., Vol. 81, No. 23, pp. 4327–4329, 2002.##
 
[32]   H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen “Beaming Light from a Subwavelength Aperture,” Science., Vol. 297, No. 5582, pp. 820–822, 2002.##
 
[33]   Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Color Filters: Plasmonic Color Filter and Its Fabrication for Large-Area Applications,” Adv. Opt. Mater., Vol. 1, No. 2, pp. 109–109, 2013.##
 
[34]   S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano letters, Vol. 12, No. 8, pp.4349-4354, 2012.##
 
[35]   T. Xu, H. Shi, Y. K. Wu, L. J. Guo, “Structural Colors: from Plasmonic to Carbon Nanostructures,” Small, Vol. 7, No. 22, pp. 3128–3136, 2011.##
 
[36]   G. SI, Y. Zhao, A. J. Danner, Y.J. Liu, “Reflective Plasmonic Color Filters Based on Lithographically Patterned Silver Nanorod Arrays. Nanoscale,” Nanoscale, Vol. 5, No. 14, pp. 6243-6248, 2014.##
 
[37]   C. Genet, T. W. Ebbesen, “Light in Tiny Holes,” Nature Journals, Vol. 445, No. 7123, pp. 39–46, 2007.##
 
[38]   M. Bigas, E. Cabruja, J. Forest, J. Salvi, “Review of CMOS Image Sensors,” Microelectronics journal, Vol. 37, No. 5, pp. 433–451, 2006.##
 
[39]   W.L. Barnes, A. Dereux, T.W. Ebbesen, “Surface Plasmon Subwavelength Optics,” nature, Vol. 424, No. 6950, pp. 824-830,  2003.##
 
[40]   A. Miyamichi, , K. Yasutomi, “Optical Color Filter Based on Surface Plasmon Resonance Using Corrugated Metallic Thin Film for Image Sensor,” Appl. Phys. Lett, Vol. 98, No. 9, pp. 19–20, 2011.##
 
[41]   N. Methods, “FDTD Solutions Numerical Methods,” pp. 1–33, 2012.##
 
[42]   K. S. Yee, J. S. Chen, “The Finite-Difference Time-Domain (FDTD)  and the Finite-Volume Time-Domain Methods in solving Maxwell’s equations,” IEEE Trans., Vol. 45, No. 3, pp. 354–363, 1997.##
 
[43]   S. D. Gedney, “Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics,” Synthesis Lectures on Computational Electromagnetics, Vol. 6, No. 1, pp. 1-250, 2011.##
 
[44]   Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, D. R. S. Cumming, “CMOS Photodetectors Integrated With Plasmonic Color Filters,” IEEE Photonics Technol. Lett., Vol. 24, No. 3, pp. 197–199, 2012.##
 
[45]   J. A. Porto, J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits.” Physical review letters, Vol. 83, No. 14, pp. 2845,1999.##
 
[46]   L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of Extraordinary Optical Transmission Through Subwavelength Hole Arrays,” Phys. Rev. Lett., Vol. 86, No. 6, pp. 1114–1117, 2001.##
 
[47]   L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett., Vol. 90, No. 16, pp. 167401., 2003.##
[48]   E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic Photon Sorters for Spectral and Polarimetric Imaging,” Nat. Photonics, Vol. 2, No. 3, pp. 161–164, 2008.##
 
[49]   W. Nakagawa, P. Sun, C. Chen, Y. Fainman, “Wide-Field-of-View Narrow-Band Spectral Filters Based on Photonic Crystal Nanocavities,” Optics Letters, Vol. 27, No. 3, pp. 191–193, 2002.##
 
[50]   D. Zhao, H. Gong, Y. Yang, Q. Li,“Realization of an Extraordinary Transmission Window for a Seamless Ag Film Based On Metal-Insulator-Metal Structures,” Appl. Phys. Lett., Vol. 102, No. 20, pp. 1–6, 2013.##