بررسی و تحلیل عددی اثر اندازه، فاصله، موقعیت و ترکیب نانوساختارهای پلاسمونی بر روی جذب سلول‏های خورشیدی پروسکایت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید رجائی

2 عضو هیئت علمی دانشگاه شهید رجایی، آزمایشگاه تحقیقاتی نانوفوتونیک و اپتوالکترونیک

چکیده

یکی از ویژگی­های اصلی سلول خورشیدی پروسکایت، قابلیت جذب بالا در ناحیه مرئی است. با این حال می‏توان به جذب پایین آن‏ها در ناحیه فروسرخ که قسمت بزرگی از طیف خورشیدی در این ناحیه است و همچنین سمی بودن ترکیبات پروسکایت اشاره کرد. برای غلبه بر این مشکل نانوذرات فلزی معرفی شده‏اند. در این مقاله با قرار دادن نانوذرات در لایه جاذب پروسکایت به بررسی اثر اندازه، فاصله، موقعیت و ترکیب نانوساختارهای پلاسمونی بر روی جذب نور، جریان نوری، چگالی جریان اتصال کوتاه و بیشینه نرخ تولید در سلول خورشیدی پروسکایت پرداخته شده است. نتایج نشان می­دهد که با استفاده از نانوذرات نقره با شعاع nm50 و فاصله nm20، خصوصیات نوری ذکرشده نسبت به حالت مرجع که بدون حضور نانوذرات است، 33/1 برابر افزایش می­یابد. همچنین ضخامت‏های مختلف لایه جاذب که رابطه مستقیمی با میزان سمی بودن آن دارد نیز مورد بررسی قرار داده می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation and Numerical Analysis of the Effect of Size, Distance, Position, and Composition of Plasmonic Nanostructures on the Absorption of Perovskite Solar Cells

نویسندگان [English]

  • Shokofeh Motevasel 1
  • Saeed Olyaee 2
  • seifouri mahmoud 1
1 SRTTU
2 SRTTU
چکیده [English]

One of the main capabilities of the perovskite solar cell is their high absorbability in the visible range. However, they have low absorption coefficient in the infrared region, which is a large part of the solar spectrum in this area, as well as the toxicity of perovskite compounds. Metal nanoparticles have been introduced to overcome this problem. In this research, we studied the effect of size, distance, position, and composition of plasmonic nanostructures on light absorption, optical current, short-circuit current density, and maximum generation rate in perovskite solar cells. The results revealed that the optical properties mentioned above will be enhanced up to 1.33 times, compared to the reference state in which no nanoparticles are present, by using silver nanoparticles with 50 nm radius and 20 nm distance. In the following, different thicknesses of the absorbent layer were examined, as thickness has a direct relationship with the absorbent layer toxicity

کلیدواژه‌ها [English]

  • Solar cell
  • Perovskite
  • Metal nanoparticles
  • Generation rate
  • FDTD Analysis
   [1]      M. A. Green, A. Ho-Baillie, H. J. and Snaith, “The emergence of perovskite solar cells,” Nature Photonics, vol. 8, no. 7, p.506, 2014.##
   [2]      H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” Journal of Physical Chemistry Letter, vol. 4, no. 21, pp.3623-3630, 2013.##
   [3]      E. Ghahremanirad, S. Olyaee, and M. Hedayati, “The influence of embedded plasmonic nanostructures on optical absorption of perovskite solar cells”, Photonics, vol. 6, no. 37, pp. 1-8, 2019.##
   [4]      E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand P. Nazari, V. Ahmadi, and K. Abedi, “Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network,” Solar Energy, vol. 169, pp. 498-504, 2018.##
   [5]      E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand, V.  Ahmadi, and K. Abedi, “Hexagonal array of mesoscopic HTM based perovskite solar cell with embedded plasmonic nanoparticles”, Physica Status Solidi B: Basic Solid State Physics, vol. 255, no. 3, pp. 1-8, 2018.##
   [6]      E. Ghahremanirad, A. Bou, S. Olyaee, and J. Bisquert, “Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model”, Journal of Physical Chemistry Letter, vol. 8, no. 7, pp. 1402-1406, 2017.##
   [7]      A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of American Chemistry Society, vol. 131, no. 17, pp.6050-6051, 2009.##
   [8]      "NREL efficiency chart"; https://www.pinterest.es/pin/126311964526950184, 2020.##
   [9]      S. K. Cushing and N. Wu, “Plasmon-enhanced solar energy harvesting,” Electrochemical Society Interface, vol. 22, no. 2, pp.63-67, 2013.##
[10]      J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials, vol. 9, no. 3, p.193, 2013.##
[11]      H. Afkham, S. Olyaee, and E. Sharifkazemi, “Analysis and simulation of influence of the silver ribbon nanoparticle’s dimensions and refractive index on the efficiency of plasmonic amorphous silicon solar cell,” Journal of Applied Electromagnetics., vol. 7, no. 1, pp. 9-16, (In Persian), 2019.##
[12]      A. Dabirian and N. Taghavinia, “Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles,” ACS Applied Materials and Interfaces, vol. 7, no. 27, pp.14926-14932, 2015.##
[13]      H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (pp. 1-11), 2011.##
[14]      M. Hedayati, S. Olyaee, and S. M. B. Ghorashi, “The effect of adsorbent layer thickness and gallium concentration on the efficiency of a dual-junction copper indium gallium diselenide solar cell,” Journal of Electronic Materials, vol. 49, no. 2, pp. 1454-1461, 2020.##
[15]      S. Olyaee and F. Farhadipour, “Investigation of hybrid Ge QDs/ Si Nanowires solar cell with improvement in cell efficiency,” Optica Applicata, vol. 48, no. 4, pp. 633-645, 2018.##
[16]      F. Adibzadeh and S. Olyaee, “Optical absorption enhancement in vertical InP nanowire random structures for photovoltaic applications,” Optical and Quantum Electronics, vol. 52, no. 1, pp. 1-14, 2020.##
[17]      H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N. G. Park, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Letters, vol. 13, no. 6, pp.2412-2417, 2013.##
[18]      D. Liu, and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nature Photonics, vol. 8, no. 2, p.133, 2014.##
[19]      Y. Xu, Y. Wang, J. Yu, B. Feng, H. Zhou, J. Zhang, J. Duan, X. Fan, P. A. Aken, P. D. Lund, and H. Wang, “Performance improvement of perovskite solar cells based on pcbm-modified ZnO-nanorod arrays,” IEEE J. Photovoltaics, vol. 6, no. 6, pp.1530-1536, 2016.##
[20]      K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. G. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, and T. F. Guo, “P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells,” Scientific Reports, 4, p.4756, 2014.##
[21]      P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature Communications, vol. 4, p.2761, 2013.##
[22]      J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, p.316, 2013.##
[23]      M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, p.395, 2013.##
[24]      J. A. Christians, R. C. Fung, and P. V.Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” Journal of American Chemical Society, vol. 136, no. 2, pp.758-764, 2013.##
[25]      P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, “Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency,” Nature Communication, vol. 5, p.3834, 2014.##
[26]      B. Abdollahi Nejand, V. Ahmadi, S. Gharibzadeh, and H. R. Shahverdi, “Cuprous oxide as a potential low‐cost hole‐transport material for stable perovskite solar cells,” ChemSusChem, vol. 9, no. 3, pp.302-313, 2016.##
[27]      Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semiconductor Science and Technology, vol. 30, no. 5, p.054004, 2015.##
[28]      B. Abdollahi Nejand, V. Ahmadi, and H. R. Shahverdi, “New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells,” ACS Applied Materials and Interfaces, vol. 7, no. 39, pp.21807-21818, 2015.##
[29]      A. Corani, M. H, Li, P. S. Shen, P. Chen, T . F. Guo, A. El Nahhas, K. Zheng, A. Yartsev, V. Sundström, and C. S. Ponseca, “Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode,” Journal of Physical Chemistry Letters, vol. 7, no.7, pp.1096-1101, 2016.##
[30]      W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y. B. Cheng, and L. Han, “Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells,” Energy and Environmental Science, vol. 8, no. 2, pp.629-640, 2015.##
[31]      X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, and M. Wang, “Hole selective NiO contact for efficient perovskite solar cells with carbon electrode,” Nano Letters, vol. 15, no. 4, pp.2402-2408, 2015.##
[32]      W. C. Lai, K. W. Lin, T. F. Guo, and J. Lee, “Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer,” IEEE Transactions on Electron Devices, vol. 62, no. 5, pp.1590-1595, 2015.##
[33]      S. Ludwigs, “P3HT Revisited-From Molecular Scale to Solar Cell Devices”, vol. 265, Berlin: springer, 2014.##
[34]      H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W Langeveld-Voss, A. J. H. Spiering, R. A. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, no. 6754, p.685, 1999.##
[35]      Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J. R. Durrant, D. D. Bradley, M. Giles, I. McCulloch, C. S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. In Materials for Sustainable Energy,” A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (pp. 63-69), 2011.##
[36]      M. Konstantakou and T. Stergiopoulos, “A critical review on tin halide perovskite solar cells,” Journal of Material Chemistry A, vol. 5, no. 23, pp.11518-11549, 2017.##
[37]      S. Bansal and P. Aryal, “Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations,” In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 0747-0750) IEEE, 2016.##
[38]      Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semiconductor Science and Technology, vol. 30, no. 5, p.054004, 2015.##
[39]      A. Chen, K. Zhu, Q. Shao, and Z. Ji, “Understanding the effects of TCO work function on the performance of organic solar cells by numerical simulation,” Semiconductor Science and Technology, vol. 31, no. 6, p.065025, 2016.##
[40]      P. Löper, M. Stuckelberger, B Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” Journal of Physical Chemistry Lettres, vol. 6, no. 1, pp.66-71, 2015.##
[41]      https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra, 2020.##
[42]      B. Cai, Y. Peng, Y. B. Cheng, and M. Gu, “4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells,” Optics Express, vol. 23, no. 24, pp. A1700-A1706, 2015.##