پیاده‌سازی سامانه زمین بهینه به‌منظور حداقل‌سازی ولتاژ گام و تماس سایت‌های مخابراتی در محیط‌های صخره‌ای و ارتفاع بالا (مورد مطالعاتی: سایت بمو)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه جامع امام حسین(ع)

2 --

چکیده

هدف از اجرای طرح‌های پدافند غیرعامل، کاستن از آسیب‌پذیری نیروی انسانی و تجهیزات حیاتی و حساس کشور در شرایط بحرانی می‌باشد. از‌این‌رو، رعایت اصول پدافند غیرعامل به‌منظور  پیشگیری و کاهش مخاطرات ناشی از سوانح طبیعی از جمله صاعقه ضروری و لازم می‌باشد.  برخورد مستقیم و غیرمستقیم صاعقه به ساختمان‌ها و انتقال جریان آن از طریق خطوط خدماتی ورودی به آن‌ها می‌تواند باعث‌ ایجاد ولتاژ گام و تماس گردد که برای انسان‌ها، ساختمان‌ها و محتویات با ارزش آن‌ها، آسیب‌زننده و خطرناک می‌باشد. به‌طور کلی ولتاژ گام تا شعاع چند متر در اطراف محل اصابت صاعقه، پراکنده می‌شود و امر موجب برق‌گرفتگی افرادی می‌شود که در اطراف آن حضور دارند. از‌ این‌رو، تحقیق حاضر با هدف به حداقل رساندن آسیب‌های ناشی از برخورد صاعقه به مراکز حساس در ارتفاع بالا و مناطق صخره‌ای از منظر پدافند غیرعامل می‌پردازد. از آنجایی‌که عموماً‌ ایستگاه‌های مخابراتی و دیتا در نقاط مرتفع کوهستانی و یا در فضاهای باز مستقر هستند، اهمیت حفاظت کارکنان در برابر صاعقه در آنها بسیار با اهمیت می‌باشد. در ‌این مقاله، بهترین و بهینه‌ترین روش جهت اجرای سامانه زمین به‌منظور حداقل‌سازی ولتاژ گام و تماس سایت‌های مخابراتی در ارتفاع بالا با کمک نرم‌افزار قدرتمند CDEGS و مطابق استاندارهای بین‌المللی ارائه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Implementation of an optimized earthing system to minimize step and touch voltage of telecommunication sites in rocky and high-altitude environments (Case Study: Bamo site)

نویسندگان [English]

  • reza ghaffarpour 1
  • S. Zamanian 2
1 IHU
2 --
چکیده [English]

The purpose of passive defense plans is to reduce the vulnerability of human resources and critical equipment in the country. Therefore, compliance with non-operating defense principles is essential to prevent and reduce the risks of natural disasters such as lightning. Direct and indirect lightning strikes on buildings and transmitting current through incoming service lines can cause step-and-contact voltages that are harmful and dangerous to the humans and, the buildings and their valuable contents. In general, the step voltage is scattered to a radius of several meters around the location of the lightning stroke, causing injury to the people nearby. Therefore, from the passive defense perspective, the present study aims to minimize the damage of lightning strikes on sensitive centers placed at high altitudes and located in rocky areas. Since telecommunications and data stations are generally positioned in highlands or open areas, lightning protection is very important. Observing the compliance with international standards and recommendations in such environments, this paper uses the CDEGS Software to present the best and most optimal way to implement the ground system in order to minimize the step-and-contact voltages of telecommunication sites.

کلیدواژه‌ها [English]

  • Earthing System
  • Step Voltage
  • Touch Voltage
  • Lightning Protection
  • Telecommunication Sites
[1] اسحاق احمدی, محمود عباسی سمنگانی، "بررسی اثر طول خط انتقال در میرایی اضافه ولتاژهای ناشی از اصابت مستقیم موج گذرای صاعقه در خط انتقال تک مداره 400 کیلوولت"، پنجمین کنفرانس بین‌المللی پژوهش‌‌های کابردی در مهندسی برق مکانیک و مکاترونیک، تهران، 1397.##
[2] محمد پارسا، سیدامین سعید و حمیدرضا اکبری رکن آبادی، "بررسی میزان تأثیر جریان عبوری از سامانه زمین بر تخلیه صاعقه در شبکه قدرت" دومین کنفرانس ملی پژوهش‌‌های نوین در مهندسی برق، بابل، موسسه علمی تحقیقاتی کومه علم آوران دانش، 1395.##
[3] محسن نیاستی و حسین رشیدی "مطالعه ی حفاظت اضافه ولتاژ القایی ناشی از صاعقه بر روی شبکه ی توزیع، چهارمین کنفرانس مهندسی برق و الکترونیک‌ایران، گناباد، دانشگاه آزاد اسلامی واحد گناباد، 1391.##
[4] Z. X. Hu, Y. P. Wen, W. G. Zhao, H. P. Zhu and S. L. Liu, "Numerical Simulation of Lightning Location Based on Monte Carlo Method," International Conference on Management and Service Science, Wuhan, pp. 1-4, 2009.##
[5] Abhay Srivastava, Mrinal Mishra,” Lightning modeling and protection zone of conducting rod using Monte Carlo technique”Applied Mathematical Modelling,Vol. 37, no. 24,pp, 9858-9864, 2013.##
[6] R. Markowska, “Induced and ground potential voltage components in analysis of separation distance for lightning protection in buildings”, Przeklad Elektrotechniczny, Vol.92, pp.265–270, 2017.##
[7] A. R. Panicali ; J. C. O. Silva ; C. F. Barbosa ; N. V. B. Alves “Preventing sparks between external LPS and structure conductive parts” Electric Power Systems Research, Vol. 153, pp. 144-151, 2017.##
[8] Jozef Bendík, Matej Cenký, Marek Pípa, Attila Kment, Michal Chudý, Anton Beláň “Experimental verification of material coefficient defining separation distance for external lightning protection system” Journal of Electrostatics, Vol.98, pp. 1-7, 2019.##
[9] جزوه آموزشی نظارت بر طراحی و اجرای سامانه‌‌های ارتینگ و حفاظت ابنیه و تجهیزات الکترونیکی در مقابل صاعقه و فراتاخت ولتاژ، شرکت ارتباطات زیر ساخت، 1387##
[10] Meliopoulos, A.P. & Patel, Shashi & Cokkinides, George.” A New Method and Instrument for Touch and Step Voltage Measurements”. Power Delivery, IEEE Transactions on. 9. Pp.1850 – 1860, 1994.##
 [11] T.R. Ayodele, A.S.O. Ogunjuyigbe, O.E. Oyewole, “Comparative assessment of the effect of earthing grid configurations on the earthing system using IEEE and Finite Element Methods”, Engineering Science and Technology, an International Journal, Vol 21, no. 5, 2018.##
[12] S. Gholami Farkoush, A. Wadood, T. Khurshaid, C. Kim, M. Irfan and S. Rhee, "Reducing the Effect of Lightning on Step and Touch Voltages in a Grounding Grid Using a Nature-Inspired Genetic Algorithm With ATP-EMTP," in IEEE Access, vol. 7, pp.81903-81910, 2019.##
[13] G. S. Bendale and K. Bhatia, "Evaluation of different grounding grid designs for Microgrid," IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Genova, Italy, pp. 1-6, 2019.##
[14] R. H. Golde, Lightning Protection, Edward Arnold Publishing Co., London, Britain, 1973.##
[15] M. A. Uman, "The Art and Science of Lightning Protection”, Cambridge, U. K.: Cambridge University Press, 2008.##
[16] Yang Zhang, Hongcai Chenb, Yaping Du,” Lightning protection design of solar photovoltaic systems: Methodology and guidelines” Electric Power Systems Research, Vol. 174, pp. 121-132, 2019##
[17] جزوه آموزشی نظارت بر طراحی و اجرای سامانه‌‌های ارتینگ و حفاظت ابنیه و تجهیزات الکترونیکی در مقابل صاعقه و فراتاخت ولتاژ، شرکت ارتباطات زیر ساخت، 1387.##
[18] MIL-HDBK-419A, GROUNDING, BONDING, AND SHIELDING FOR ELECTRONIC EQUIPMENTS AND FACILITIES, 1982.##
[19] R. H. Golde, Lightning Protection, Edward Arnold Publishing Co., London, Britain, 1973.##
[20]J. A. Guemes and F. E. Hernando, "Method for calculating the ground resistance of grounding grids using FEM," in IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 595-600, April 2004.##
[21] Motorola R-56, Standards & Guidelines for communications sites, 2012.##
[22] Q. B. Zhou and Y. Du, "Numerical analysis of the charge distribution on building structure in the preliminary breakdown phase of lightning," in Proc. 17th Int. Zurich Sym. On Electromagnetic Compatibility, pp. 405-408, 27 Feb.- 3Mar. 2006.##
[23] British Standard, BS6651 Protection of Structures against Lightning 1992.##
[24] IEEE 1692 Guide for the Protection of Communication Installations fromLightning Effects, 2011.##
[25] ERICO HANDBOOK, Grounding product and system protection, 2002.##