طراحی، شبیه‌‌سازی و ساخت جاذب امواج الکترومغناطیسی پهن‌‌باند با ابعاد بهینه مبتنی بر فراماده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده برق، دانشگاه پدافند هوایی خاتم الانبیاء(ص)، تهران، ایران

2 دانشیار، دانشگاه شهید ستاری، تهران، ایران

3 کارشناسی ارشد، دانشکده برق، دانشگاه پدافند هوایی خاتم الانبیاء(ص)، تهران، ایران

چکیده

در این مقاله، یک جاذب فراماده پهن­باند با ساختاری ساده، ابعاد و ضخامت بهینه برای کاربردهای باند X پیشنهاد شده است. این ساختار با استفاده از سه حلقه دایروی شکافدار طراحی شده و با نرم‌افزار HFSS ابعاد آن بهینه­‌سازی شده است. سلول واحد جاذب پیشنهادی دارای ابعاد و ضخامت کم (ضخامت 066/0  در فرکانس مرکزی GHz  10) می­باشد. یک آرایه 24×24 عنصری از جاذب فراماده پیشنهادی با ابعاد 170×170 ساخته شده و مورد ارزیابی عملی قرار گرفت. مولفه‌های ساختاری فراماده حاصل شامل ضریب نفوذ مغناطیسی  و ضریب گذردهی الکتریکی  آن با روش نیکلسون- رز استخراج شده است. نتایج حاصل از شبیه­سازی و اندازه­گیری عملی، نشان می­دهد که تقریباً در کل محدوده باند x (GHz 3/7 الی GHz 50/11)، ساختار دارای پهنای باند جذب بالای 90 درصد می­باشد. همچنین بررسی­ نتایج حاصله نشان می­دهد که تطابق بسیار خوبی بین پاسخ اندازه­گیری عملی و شبیه­سازی برقرار می­باشد. ساختار طراحی شده برای زوایای برخورد عمود و مایل موج الکترومغناطیسی، مورد آزمایش قرار گرفت که تا زاویه تابش 45 درجه، پهنای باند جذب ساختار تغییر محسوسی نمی­کند.

کلیدواژه‌ها


[1]     V. G. Veselago, “The Electrodynamics of Substances With Simultaneously Negative Value of ε and μ,” Sov. Phys. Usp., vol. 10, pp. 509-514, 1968.##
[2]     D. R. Smith and W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium With Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, 2000.##
[3]     N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett., vol. 100, p. 207402, 2008.##
[4]     F. Billotti, L. Nucci, and L. Vegni, “An SRR Based Microwave Absorber,” Microwave and Opt. Tech. Lett., vol. 48, pp. 2171–2175, 2006.##
[5]     A. Sharifi and J. Khalilpour, “Patch Antenna Gain Enhancement With Metamaterial Split Ring Resonator Radome,” App. electromagnetism Scientific biweekly, vol. 3, no. 3, pp. 39-44, 1395. (In Persian)##
[6]     Ch. Arora, S. S. Pattnaik, and R. N. Baral, “Performance Enhancement of Patch Antenna Array for 5.8 Ghz Wi-MAX Applications Using Metamaterial Inspired Technique,” Int. J. Electron. and Commun., vol. 79, pp. 124–131, 2017.##
[7]     W. Chettiar, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking With Materials,” Int. J. Electronics and Commun., Nature photonics, vol. 1, pp. 224–227, 2007.##
[8]     D. Hamonpeyma and A. Alighanbari, “Non-Uniform and Local Coverage of The Aircraft with the Lowest Radar Cross Section and The Lowest Weight of The Absorber Material,” Radar Magazine, vol. 5, no. 2, pp.27-40, 1396. (In Persian)##
[9]     N. Zhang, N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-Band Absorption of Mid-Infrared Metamaterial Absorber Based on Distinct Dielectric Spacing Layers,” Opt. Lett., vol. 38, pp. 1125–1127, 2013.##
[10]  H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A Metamaterial Absorber for The Thz Regime: Design, Fabrication and Characterization,” Opt. Express., vol. 16, pp. 7181–7188, 2008.##
[11]  M. R. Soheilifar, R. A Sadeghzadeh, and H Gobadi, “Design and Fabrication of A Metamaterial Absorber In The Microwave Range,” Microwave and Opt. Tech. Lett., vol. 56, pp. 1748–1752, 2014.##
[12]  H. Li, L. H. Yua, B. Zhou, X. P. Shen, Q. Cheng, and T. J Cui, “Ultrathin Multiband Gigahertz Metamaterial Absorbers,” J. App. Phys., vol. 110, p. 014909, 2011.##
[13]  B. Ni, X. S Chen, L. J. Huang, J. Y. Ding, G. H Li, and W Lu, “A Dual-Band Polarization Insensitive Metamaterial Absorber With Split Ring Resonator,” Opt. and Quantum Electronics, vol. 45, pp. 747–753, 2013.##
[14]  S. Ramya and I. S. Rao, “Design of Polarization-Insensitive Dual Band Metamaterial Absorber,” Prog. Electromagnetics Research M, vol. 50, pp. 23–31, 2016.##
[15]  Y. J. Yoo, Y. J. kim, et. al., “Triple-Band Perfect Metamaterial Absorption, Based on Single Cut-Wire Bar,” App. Phys. Lett., vol. 106, p. 071105, 2015.##
[16]  A. Bhattacharya, S. Bhattacharya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, “An Ultrathin Penta-Band Polarization-Insensitive Compact Metamaterial Absorber for Airborne Radar Applications,” Microwave and Opt. Tech. Lett., vol. 57, pp. 2519-2524, 2015.##
[17]  J. Lee and S. Lim, “Bandwidth-Enhanced and Polarisation-Insensitive Metamaterial Absorber Using Double Resonance,” Electronics Lett., vol. 47, pp. 8-9, 2011.##
[18]  S. Ghosh, S. Bhattacharya, D. Chaurasiya, and K.V. Srivastava, “An Ultra   Wideband Ultrathin Metamaterial Absorber Based on Split Sing Resonators,” App. Phys., vol. 14, pp. 1172–1175, 2015.##
[19]  S. Bhattacharya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, “Bandwidth-Enhanced Dual-Band Dual-Layer Polarization-Independent Ultra-Thin Metamaterial Absorber,” App. Phys., vol. 118, pp. 207–215, 2015.##
[20]  H. Xiong, J. S. Hong, C. M. Luo, and L. L. Zhong “An Ultrathin And Broadband Metamaterial Absorber Using Multi-Layer Structures,” J. Appl. Phys., vol. 114, p. 064109, 2013.##
[21]  L. Lee, J. Wang, H. Du, S. Qu, and Z. Xu, “A Band Enhanced Metamaterial Absorber Based on E-Shaped All-Dielectric Resonators,” AIP Advances, vol. 5, p. 017147, 2015.##
[22]  D. Sood and C. C. Tripathi, “A Wideband Wide-Angle Ultrathin Low-Profile Metamaterial Microwave Absorber,” Microwave and Opt. Tech. Lett., vol. 58, pp. 1131–1135, 2016.##
[23]  S. Ramya and I. S. Rao, “A Compact Ultra-Thin Ultrawideband Microwave Metamaterial Absorber,” Microwave and Opt. Tech. Lett., vol. 59, pp. 1837–1845, 2017.##
[24]  Y. Liu, S. Gu, C. M. Luo, and X. Ahao “Ultra-Thin Broadband Metamaterial Absorber,” J. Appl. Phys, vol. 108, pp. 19–24, 2012.##
[25]  D. Zarifi, A. Farahbakhsh, and M. Soleymani, “Extraction of Electromagnetic Parameters of A Homogeneous and Homogeneous Metamaterial Blade Using The State Space Method,” App. electromagnetism Scientific biweekly, vol. 2(2), pp. 1-9, 1393. (In Persian)##
[26]  A. M. Nicolson and G.F. Ross, “Measurement of The Intrinsic Properties of Materials By Time-Domain Techniques,” IEEE Trans. Instrum. Meas., vol. 19, pp. 377–382, 1970.##
دوره 9، شماره 1 - شماره پیاپی 22
شماره پیاپی 22، دوفصلنامه بهار و تابستان
اردیبهشت 1400
صفحه 55-61
  • تاریخ دریافت: 07 خرداد 1399
  • تاریخ بازنگری: 28 تیر 1399
  • تاریخ پذیرش: 12 مرداد 1399