تحلیل چرخ‌دنده مغناطیسی هم محور با ساختار قطب منتجه بر مبنای مدار معادل مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد شهرقدس، شهرقدس، ایران

2 دانشیار، دانشکده فنی و مهندسی ، دانشگاه آزاد اسلامی واحد آشتیان، تهران، ایران

3 استادیار، پژوهشگاه نیرو، تهران، ایران

چکیده

 به‌منظور تسهیل در طراحی و تحلیل یک چرخ‌دنده، نیاز به محاسبه دقیق توزیع شار مغناطیسی در قسمت‌های مختلف چرخ‌دنده است. اگرچه استفاده از روش تحلیل المان محدود نسبتاً دقیقتر است اما برای مطالعات پارامتری در مراحل اولیه فرآیند طراحی یک محصول، بسیار زمان‌بر است. لذا در این مواقع اغلب از روش MEC استفاده می‌شود. یکی از ساختارهای نسبتاً جدید چرخ‌دنده‌ها، نوع قطب منتجه می‌باشد که در حجم آهنربا صرفه‌جویی می‌شود. در این مقاله مدل‌سازی دو بعدی یک چرخ‌دنده قطب منتجه با استفاده از روش MEC ارائه شده است که توزیع میدان‌های مغناطیسی، شارها، گشتاور روتور درونی و بیرونی را در بخش‌های مختلف چرخ‌دنده تعیین شده است. برای ارزیابی عملکرد مدل ارائه شده، برای دو نمونه چرخ‌دنده با مقادیر متفاوت ضریب قطب  و ضریب حلقه مدولاسیون چرخ‌دنده تحلیل شده و چگالی شار، گشتاور و غیره در بخش‌های مختلف چرخ‌دنده تعیین شده است. همچنین برای تایید نتایج به‌دست آمده از مدل، تحلیل المان محدود توسط نرم افزار Ansoft/Maxwell انجام گرفته است و نتایج با یکدیگر مقایسه شده اند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of a Coaxial Consequent-Pole Magnetic Gear based on Magnetic equivalent circuit

نویسندگان [English]

  • A.R khodakarami 1
  • Hassan Feshki Farahani 2
  • reza nasiri zarandi 3
1 Instructor, Faculty of Engineering, Islamic Azad University, Shahr-e-Quds Branch, Shahr-e-Quds, Iran
2 Ashtian Branch, Islamic Azad University, Ashtian, Iran
3 Niroo Research institute, Tehran, Iran
چکیده [English]

Design and analysis of a magnetic gear (MG) needs to pricise calculation of flux density distribution along the MG. However applying the finite element methode is relatively accurate, it takes a long time in the preliminary design process in order to study the effective parameters. One of the new structures of MGs is consequent-pole mahgnetic gear (CPM) kind that saves the permanent magnet (PM). In this paper, the 2-dimensional (2D) modeling of a CPM using magnetic equivalent circuit (MEC) method is presented which determines the distribution of magnetic fields, fluxes, and torques of inner and outer rotors. To evaluate the performance of the proposed model, a CPM is analysed with two pole PM arc coefiecinet and flux density is extracted in different parts of CMG as well as its radial and tangential  component of tourqu. Furthermore, to confirm the proposed model results, the finite element analysis was performed by Ansoft / Maxwell software that verifies the MEC results.

کلیدواژه‌ها [English]

  • Consequent-Pole Magnetic Gear
  • Pull out Torque
  • Modulation Ring and Flux Density
[1]     S. Niu, N. Chen, S. L. Ho, and W. N. Fu, “Design Optimization of Magnetic Gears Using Mesh Adjustable Finite-Element Algorithm for Improved Torque,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4156-4159, 2012.##
[2]     K. Atallah, S. D. Calverley, and D. Howe, “High-performance magnetic gears,” Journal of Magnetism and Magnetic Materials, vol. 272-276, no. Supplement, pp. E1727-E1729, 2004/05/01/ 2004.##
[3]     X. L. Xiaoxu Zhang, Chao Wang, and Zhe Chen, “Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear,” Energies, vol. 7, no. 12, pp. 8535-8553, 2014.##
[4]     Y. F. Xin Yin, Xiaoyan Huang, “Analytical Modeling of a Novel Vernier Pseudo-Direct-Drive Permanent-Magnet Machine,” IEEE Transactions on Magnetics vol. 53, no. 6, 2017.##
[5]     P. M. Tlali, R. J. Wang, and S. Gerber, “Magnetic gear technologies: A review,” in 2014 International Conference on Electrical Machines (ICEM), pp. 544-550, 2014.##
[6]     Y. D. Yao, D. R. Huang, C. M. Lee, S. J. Wang, D. Y. Chiang, and T. F. Ying, “Magnetic coupling studies between radial magnetic gears,” IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 4236-4238, 1997.##
[7]     Y. D. Yao, D. R. Huang, C. C. Hsieh, D. Y. Chiang, and S. J. Wang, “Simulation study of the magnetic coupling between radial magnetic gears,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp. 2203-2206, 1997.##
[8]     S. Kikuchi and K. Tsurumoto, “Design and characteristics of a new magnetic worm gear using permanent magnet,” IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 2923-2925, 1993.##
[9]     S. Kikuchi and K. Tsurumoto, “Trial construction of a new magnetic skew gear using permanent magnet,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4767-4769, 1994.##
[10]   J. Rens and K. Atallah, “A Novel Magnetic Harmonic Gear,” Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International, pp. 3-8, 2007.##
[11]   K. Davey, L. McDonald, and T. Hutson, “Axial Flux Cycloidal Magnetic Gears,” IEEE Transactions on Magnetics, vol. 50, no. 4, 2014.##
[12]   Y. Chen and F. Weinong, “A novel hybrid-flux magnetic gear and its performance analysis using the 3-D finite element method,” Energies, vol. 8, no. 5, pp. 3313-3327, 2015.##
[13]   M. Chen, K.-t. Chau, C. H. T. Lee, and C. Liu, “Design and Analysis of a New Axial-Field Magnetic Variable Gear Using Pole-Changing Permanent Magnets,” Progress In Electromagnetics Research, vol. 153, no. October, pp. 23-32, 2015.##
[14]   K. Atallah and D. Howe, “A novel high-performance magnetic gear,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2844-2846, 2001.##
[15]   L. Jian and K. T. Chau, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 319-328, 2010.##
[16]   L. Jian, K. T. Chau, Y. Gong, J. Z. Jiang, C. Yu, and W. Li, “Comparison of Coaxial Magnetic Gears With Different Topologies,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4526-4529, 2009.##
[17]   J. X. Shen, H. Y. Li, H. Hao, M. J. Jin, and Y. C. Wang, “Topologies and performance study of a variety of coaxial magnetic gears,” IET Electric Power Applications, vol. 11, no. 7, pp. 1160-1168, 2017.##
[18]   H. M. Shin and J. H. Chang, “Analytical Magnetic Field Calculation of Coaxial Magnetic Gear With Flux Concentrating Rotor,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.##
[19]   T. Lubin, S. Mezani, and A. Rezzoug, “Analytical Computation of the Magnetic Field Distribution in a Magnetic Gear,” IEEE Transactions on Magnetics, vol. 46, no. 7, pp. 2611-2621, 2010.##
[20]   Y.-J. Ge, C.-Y. Nie, and Q. Xin, “A three dimensional analytical calculation of the air-gap magnetic field and torque of coaxial magnetic gears,” Progress In Electromagnetics Research, vol. 131, pp. 391-407, 2012.##
[21]   B. Dianati, H. Heydari, and S. A. Afsari, “Analytical computation of air-gap magnetic field in a viable superconductive magnetic gear,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 6, pp. 1-12, 2016.##
[22]   C.-T. Liu, K.-Y. Hung, and C.-C. Hwang, “Developments of an Efficient Analytical Scheme for Optimal Composition Designs of Tubular Linear Magnetic-Geared Machines,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.##
[23]   M. Desvaux, B. Traullé, R. L. G. Latimier, S. Sire, B. Multon, and H. B. Ahmed, “Computation Time Analysis of the Magnetic Gear Analytical Model,” IEEE Transactions on Magnetics, vol. 53, no. 5, pp. 1-9, 2017.##
[24]   A. Rahideh, A. A. Vahaj, M. Mardaneh, and T. Lubin, “Two-dimensional analytical investigation of the parameters and the effects of magnetisation patterns on the performance of coaxial magnetic gears,” IET Electrical Systems in Transportation, vol. 7, no. 3, pp. 230-245, 2017.##
[25]   A. S. Abdel-Khalik, A. S. Elshebeny, and S. Ahmed, “Design and evaluation of a magnetic planetary gearbox for compact harsh environments,” SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1178-1182, 2010.##
[26]   H. N. Niguchi and K. Howe, “Transmission Torque Analysis of a Novel Magnetic Planetary Gear Employing 3-D FEm,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 1043-1046, 2012.##
[27]   S. Peng, W. N. Fu, and S. L. Ho, “A Novel Triple-Permanent-Magnet-Excited Hybrid-Flux Magnetic Gear and Its Design Method Using 3-D Finite Element Method,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 3313-3327, 2014.##
[28]   K. Nakamura, M. Fukuoka, and O. Ichinokura, “Performance improvement of magnetic gear and efficiency comparison with conventional mechanical gear,” Journal of Applied Physics, vol. 115, no. 17, pp. 50-53, 2014.##
[29]   N. Niguchi, K. Hirata, M. Muramatsu, and Y. Hayakawa, “Eddy current analysis of magnetic gear employing 3-D FEM,” Electromagnetic Field Computation (CEFC), 2010 14th Biennial IEEE Conference on, vol. 540, no. 2009, p. 1, 2010.##
[30]   M. Fukuoka, K. Nakamura, and O. Ichinokura, “Dynamic Analysis of Planetary-Type Magnetic Gear Based on Reluctance Network Analysis,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2414-2417, 2011.##
[31]   M. Fukuoka, K. Nakamura, and O. Ichinokura, “RNA-Based Optimum Design method for SPM type Magnetic Gears,” Journal of the Magnetics Society of Japan, vol. 37, no. 3-2, pp. 264-267, 2013.##
[32]   Y.-C. Wu and B.-S. Jian, “Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method,” Applied Mathematical Modelling, vol. 39, no. 19, pp. 5746-5758, 2015.##
[33]   M. Johnson, M. C. Gardner, and H. A. Toliyat, “A Parameterized Linear Magnetic Equivalent Circuit for Analysis and Design of Radial Flux Magnetic Gears—Part I: Implementation,” IEEE Transactions on Energy Conversion, 2017.##
[34]   F. Abolqasemi-Kharanaq, R. Alipour-Sarabi, Z. Nasiri-Gheidari, and F. Tootoonchian, “Magnetic Equivalent Circuit Model for Wound Rotor Resolver Without Rotary Transformer’s Core,” J. IEEE Sensors Journal, vol. 18, no. 21, pp. 8693-8700, 2018.##
[35]   J. Bao, B. Gysen, and E. Lomonova, “Hybrid analytical modeling of saturated linear and rotary electrical machines: Integration of Fourier modeling and magnetic equivalent circuits,” J. IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.##
[36]   P. Naderi and A. Shiri, “Modeling of ladder-secondary-linear induction machine using magnetic equivalent circuit,” J IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11411-11419, 2018.##
[37]   P. Ojaghlu, A. Vahedi, and F. Totoonchian, “Magnetic equivalent circuit modelling of ring winding axial flux machine,” J. IET Electric Power Applications, vol. 12, no. 3, pp. 293-300, 2017.##
[38]   J.-H. Sim, D.-G. Ahn, D.-Y. Kim, and J.-P. Hong, “Three-dimensional equivalent magnetic circuit network method for precise and fast analysis of PM-assisted claw-pole synchronous motor,” J. IEEE Transactions on Industry Applications, vol. 54, no. 1, pp. 160-171, 2017.##
[39]   H. F. Farahani, “Magnetic equivalent circuit modelling of coaxial magnetic gears considering non-linear magnetising curve,” J. IET Science, Measurement Technology, vol. 14, no. 4, pp. 454-461, 2020.##
[40]   K. Nakamura and O. Ichinokura, “Dynamic simulation of PM motor drive system based on reluctance network analysis,” in 2008 13th International Power Electronics and Motion Control Conference, IEEE, pp. 758-762, 2008.##
[41]   M. Cheng, K. Chau, C. Chan, E. Zhou, and X. J. I. T. o. M. Huang, “Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors,” vol. 36, no. 1, pp. 339-348, 2000.##
[42]   S. Mallampalli and V. Rallabandi, “Parametric study of magnetic gear for maximum torque transmission,” in 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-5, 2014.##
دوره 9، شماره 1 - شماره پیاپی 22
شماره پیاپی 22، دوفصلنامه بهار و تابستان
اردیبهشت 1400
صفحه 79-88
  • تاریخ دریافت: 06 تیر 1399
  • تاریخ بازنگری: 31 مرداد 1399
  • تاریخ پذیرش: 15 شهریور 1399
  • تاریخ انتشار: 01 اردیبهشت 1400