مدل‌سازی عددی گیت منطقی برگشت‌پذیر فاینمن تمام نوری بر مبنای اثرات غیرخطی کِر در بلورهای فوتونی دوبعدی با ابعاد بسیار کم و کنتراست بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی برق، دانشگاه لرستان، خرم آباد، ایران

2 دانشگاه لرستان

چکیده

هدف از این طرح، پیشنهاد یک گیت منطقی فاینمن مبتنی بر بلورهای فوتونی دو بعدی با در نظر گرفتن اثرات غیرخطی کر  می­یاشد. این افزاره­ها امکان طراحی پردازشگرهای با مصرف توان کم و سرعت بالا را فراهم می­کنند. گیت منطقی پیشنهادی با در نظر گرفتن دو پارامتر شامل اثرات غیرخطی کر و ایجاد موج‌برهای همسان برای تناوب ساختار، طراحی شده است. طول‌موج کاری گیت منطقی پیشنهادی در محدوده 1550 نانومتر تنظیم شده است. دست­یابی به ابعاد کوچک یکی از نکات مهم در طراحی گیت‌های منطقی نوری می‌باشد. در این رابطه، یکی از مزیت‌های ساختار پیشنهادی اندازه کوچک آن μm2 8.55×7.54 است که به‌دلیل استفاده از سه موج‌بر ابعاد کاهش یافته است. زمان تأخیر گیت منطقی برابر باps  2/0 به‌دست آمده است. نسبت کمینه توان نوری دریافت شده به توان ورودی در حالت یک منطقی برابر با 95/0 و نسبت بیشینه توان نوری به توان ورودی در حالت صفر منطقی 2/0 است. در نتیجه میزان نسبت تباین گیت منطقی طراحی‌شده برابر dB 4/8  به‌دست آمده است.

کلیدواژه‌ها


   [1]      A. Mohebzadeh Bahabadi and S. Olyaei, “Design of an All-Optical AND Logic Gate based on Photonic Crystal with Small Dimensions Suitable for Integrated Optical Circuits,” Journal of Applied Electromamnetic, vol. 1, pp. 53-59, 2018. (In Persian (##
   [2]      R. Cavin, P. LugIi, and Y. Zhirnov, “Science and engineering beyond Moore's law,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp.          1720-1749, May 2012.##
   [3]      J. D. Joannopoulos, S. G. Johnson, N. Winn, and R. D. Meade, “Photonic Crystals: Molding the Flow of Light,” P. U. Press, Ed. Princeton University Press, 2008.##
   [4]      A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Applied Physics Letters, vol. 96, no. 7, p. 071104, 2010.##
   [5]      J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Applied Physics Letters, vol. 100, no. 11, 2012.##
   [6]      H. Soto, E. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using crosspolarization modulation in a semiconductor optical amplifier,” Photonics Technology Letters, IEEE, vol. 14, no. 4, pp. 498-500, April 2002.##
   [7]      S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express, vol. 8(3), pp. 173–190, 2001.##
   [8]      L. E. Pedraza Caballero, J. P. Vasco, P. S. S. Guimadies, and O. P. Vilela Neto, “ AII-Optical Majority and Feynman Gates in Photonic Crystals,” IEEE 978-1-4673-7162-9/15, 2015.##
   [9]      P. Kumar Biswas, A. Newaz Bahar, M. D. Ahsan Habib, and M. D. Abdullah-Al-Shafi, “Efficient Design of Feynman and Toffoli Gate in Quantum dot Cellular Automata (QCA) with Energy Dissipation Analysis,” Nanoscience and Nanotechnology,  vol. 7(2), pp. 27-33, 2017.##
[10]      Berenger, Jean-Pierre, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114.2, pp. 185-200, 1994.##
[11]      F. Bohren Craig and R. Donald Huffman, “Absorption and scattering of light by small particles,” John Wiley & Sons, 2008.##
[12]      R. W. Boyd, Nonlinear Optics 3rd edn, Academic, 2008.##
[13]      A. Taflove and M. E., Brodwin, “Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's equations,” IEEE Transaction on Microwave Theory and Techniques, pp. 623-630, 1975.##
[14]      A. Igor and A. Sukhoivanov, “Photonic crystals: Physics and Practical Modeling,” Springer Series in Optical Sciences, vol. 152, pp. 41-65, 2009.##
[15]      Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302-307, 1966.##
[16]      R. Rajasekar, R. Latha, and S. Robinson, “Ultra-contrast ratio optical encoder using photonic crystal waveguide,” 0167-577X, 2019.##
[17]      R. Sattibabu and G. Pranabendu, “Design of reversible optical Feynman gate using directional couplers,” Optical Engineering, vol. 59.2, p. 027104, 2020.##
[18]      M. M. Karkhanehchi, F. Parandin, and A. Zahedi, “Design of an all optical half-adder based on 2D photonic crystals,” Photonic Network Communications, vol. 33.2, pp.        159-165, 2017.##
[19]      M. J. Maleki, A. Mir, and M. Soroosh, “Ultra-fast all-optical full-adder based on nonlinear photonic crystal resonant cavities,” Photonic Network Communications, pp. 1-9, 2020.##
[20]      M. Danaie and H. Kaatuzian, “Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect,” Optical and Quantum Electronics, vol. 44.1, pp.  27-34, 2012.##
[21]      Z. Mohebbi, N. Nozhat, and F. Emami, “High contrast    all-optical logic gates based on 2D nonlinear photonic crystal,” Optics Communications, vol. 355, pp. 130-136, 2015.##
[22]      T. Sadeghi, et al., “Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory,” Applied Physics B, vol. 125.10, pp. 1-12, 2019.##
[23]      A. Farmani, A. Mir, and M. Irannejad, “2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal,” JOSA B 36.4, pp.       811-818, 2019.##