طراحی ماتریس باتلر 4×4 باند V در فناوری موجبر شکافی ریج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد ، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 استادیار دانشگاه تحصیلات تکمیلی و ناوری پیشرفته کرمان، ایران

چکیده

در این مقاله یک ماتریس باتلر در فناوری موجبر شکافی ریج اراﺋﻪ می­شود. برای این منظور ابتدا به طراحی کوپلر ریبلت در باند موج میلیمتری پرداخته می­شود. ضریب تزویج کوپلر ریبلت طراحی شده dB ۳ و اختلاف فاز دهانه­های خروجی آن ۹۰ درجه هست. همچنین افت برگشتی از دهانه­های این کوپلر در بازه فرکانسی GHZ  53  تا  GHz 60  بهتر از dB 10 هست. سپس به طراحی تقاطع و شیفت­دهنده فاز ۴۵ درجه در بازه فرکانسی ذکر شده پرداخته می­شود به نحوی که سیگنال خروجی تقاطع و شیفت­دهنده فاز با هم اختلاف فاز ۴۵ درجه داشته باشند. با اتصال مناسب چهار کوپلر ریبلت، دو شیفت­دهنده فاز و یک تقاطع، ساختار ماتریس باتلر طراحی می­شود. ماتریس باتلر طراحی شده دارای ۴ دهانه ورودی و ۴ دهانه خروجی هست. نتایج شبیه­سازی ماتریس طراحی شده توسط نرم­افزار HFSS نشان می­دهد که به‌ازای تحریک هر دهانه ورودی در بازه فرکانسی GHZ  53  تا  GHz 60  توان به‌صورت تقریباً مساوی بین ۴ دهانه خروجی با نسبت حدوداً dB ۶- تقسیم می­شود و اختلاف فاز خطی بین خروجی­های ماتریس وجود دارد که با تغییر تحریک به دهانه دیگر اختلاف فاز بین خروجی­ها نیز تغییر می­کند. به دلیل ایجاد توزیع دامنه و فاز مطلوب در خروجی­های ماتریس باتلر، نتایج شبیه­سازی مورد تأیید هستند. همچنین مقایسه نتایج با نتایج شبیه­سازی شده توسط نرم­افزار CST تأییدکننده عملکرد مناسب ماتریس طراحی شده می­باشد.

کلیدواژه‌ها


Smiley face

[1] R. Wu, R. Minami, Y. Tsukui, S. Kawai, Y. Seo, S. Sato, K. Kimura, S. Kondo, T. Ueno, N. Fajri, S. Maki, N. Nagashima, Y. Takeuchi, T. Yamaguchi, A. Musa, K. Kaan Tokgoz, T. Siriburanon, B. Liu, Y. Wang, J. Pang, N. Li, M. Miyahara, K. Okada, and Akira Matsuzawa, “64-QAM 60-GHz CMOS Transceivers for IEEE 802.11ad/ay,” IEEE J. Solid-State Cir., vol. 52, no. 11, pp. 2871-2891, 2017. DOI:10.1109/JSSC.2017.2740264
[2] S. Blandino, G. Mangraviti, C. Desset, A. Bourdoux, P. Wambacq, and S. Pollin, “Multi-User Hybrid MIMO at 60 GHz Using 16-Antenna Transmitters,” IEEE Trans. Cir. Sys. I, vol. 66, iss. 2, pp. 848 – 858, 2019. DOI:10.1109/TCSI.2018.2866933
[7] Y. Ban et al., “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981–2988, 2016. DOI:10.1109/IMWS-AMP.2016.7588434
[8] J. Butler and R. Howe, “Beamforming matrix simplifies design of electronically scanned antennas,” Elec. Design., vol. 9, no. 8, pp. 170–173, 1961.
[9] H. J. Moody, “The systematic design of the Butler matrix,” IEEE Trans. Antennas Propag., vol. 12, no. 6, pp. 786–788, 1964.
[11] T. Djerafi et al., "Planar Ku-Band 4x4 Nolen Matrix in SIW Technology," IEEE Trans. Micro. Theory Techn., vol.58,no.2,pp.259-266,2010. DOI:10.1109/APMC.2008.4958041
[12] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,” IEEE Microw. Wireless Com. Lett., vol. 19, no. 6, pp. 374-376, 2009. https://doi.org/10.1016/j.aeue.2022.154287
[13] D. H. Kim, J. Hirokawa, K. Tekkouk, M. Ando, R. Sauleau, “Comparison between one-body 2-D beam-switching Butler matrix and 2-D beam-switching Rotman lens,” Proceedings of ISAP, 2016.
[14] H. N. Chu, Tzyh-Ghuang Ma, “An Extended 4 × 4 Butler Matrix With Enhanced Beam Controllability and Widened Spatial Coverage,” IEEE Trans. Microw. Theory Tech.,  vol. 66, iss. 3, pp. 1301-1311, 2018. DOI:10.1109/TMTT.2017.2772815
[16] E. T. Der , T. R. Jones, M. Daneshmand, “Miniaturized 4 × 4 Butler Matrix and Tunable Phase Shifter Using Ridged Half-Mode Substrate Integrated Waveguide,” IEEE Trans. Microw. Theory Tech.,  vol. 68, iss. 8, pp. 3379-3388, 2020. DOI:10.1109/TMTT.2020.2989798
[17] Lei-Lei QiuL. ZhuZhao-An OuyangL. Deng, “Wideband Butler Matrix Based on Dual-Layer HMSIW for Enhanced Miniaturization,” IEEE Mic. Wire. Com. Letters , vol. 32, Iss. 1, pp. 25-28, 2022.
[19] T. Tomura, Dong-Hun Kim, M. Wakasa, Y. Sunaguchi, J. Hirokawa, Kentaro Nishimori, “A 20-GHz-band 64×64 Hollow Waveguide Two Dimensional Butler Matrix,” IEEE Access, vol. 7, pp. 164080 – 164088, 2019.
[21] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel ‎metal plates,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 84-87, 2009.‎ DOI:10.1109/LAWP.2008.2011147
[22] P.-S. Kildal, “Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves,” in Proc. EuCAP, Mar. 2009.
[23] E. Rajo, P-S. Kildal, “Numerical Studies of Bandwidth of Parallel Plate Cut-Off Realized by a Bed of Nails, Corrugations and Mushroom-Type Electromagnetic Bandgap for Use in Gap Waveguides,” IET Microw. Antennas Propag., vol. 5, no. 3, pp. 282-289, 2011. DOI:10.1049/iet-map.2010.0073
[24] M. S. Dehghani, D. Zarifi, “Design of Power Divider Based on Gap Waveguide Technology for Use in Low Sidelobe Level 60-GHz Slot Array Antenna,” J. Appl. Electromagnetics, vol. 7, no.2, pp. 97-104, 2020. (In Persian). DOR:20.1001.1.26455153.1398.7.2.11.6
[25] A. U. Zaman, A. A. Glazunov, “Millimeter Wave Wideband High Gain Antenna Based on Gap Waveguide Technology,” Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 2017.
[26] Adrián Tamayo-Domínguez, José-Manuel Fernández-González and Manuel Sierra-Castañer, “3-D-Printed Modified Butler Matrix Based on Gap Waveguide at W-Band for Monopulse Radar,” IEEE Trans. Microw. Theory Tech., vol. 68, iss. 3, pp. 926-938, 2019. DOI:10.1109/TMTT.2019.2953164
[27] Chao-Hsiung Tseng, Chih-Jung Chen and Tah-Hsiung Chu, “A Low-Cost 60-GHz Switched-Beam Patch Antenna Array With Butler Matrix Network,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 432-435, 2008. DOI:10.1109/LAWP.2008.2001849
[28] K. Tekkouk, J. Hirokawa, R. Sauleau, M. Ettorre, M. Sano, M. Ando, “Dual-layer Ridged Waveguide Slot Array fed by a Butler Matrix with Sidelobe Control in the 60 GHz Band, IEEE Transactions on Antennas and Propagation, vol. 63, Iss. 9, pp. 3857 – 3867, 2015. DOI:10.1109/TAP.2015.2442612
[29] P. Chen, W. Hong, Z. Kuai, J. Xu, H. Wang, J. Chen, H. Tang, J. Zhou, and K. Wu “A Multibeam Antenna Based on Substrate Integrated Waveguide Technology for MIMO Wireless Communications, IEEE Trans. Antennas Propag., vol. 57, no. 6, pp.1813-1821, 2009. DOI:10.1109/TAP.2009.2019868
[30] F. Gross, “Smart Antenna for Wireless Communication,” McGraw-Hill, NY, USA, 2005.
[31] H. J. Riblet, “The Short-Slot Hybrid Junction,” Proceedings of IRE, vol. 40, pp. 180-184, 1952.